@L
@F° lHa
@L
a¾≡ lHa
M
@L
@Â H"
- 1tr⅛ (It (B0BF1 )] + 1[~ (It (B0B)"1)~],
2 ¾° 2 ¾4
1 1 1 u~0 u~
- Qtr[ 2 INT] + F^4^] = 0;
2 ~° 2 ¾ °
2 _ NT ,U0(Jτ In)U
M) = 2¾° ' U0U
D(A) =
NT U0 (IT
^^2
-1;
(w + W0))~ = NTU0(Iτ w)u
U~0 U~ U~0 U~
Therefore, the score with respect to μ, evaluated at the restricted MLE is given by
203 |
20 | ||
D~ μ = |
666 D(¾~2M) |
7= |
NT u ~0(Jτ IN)u _ 1 ∖ |
L D(~) J |
^NTr U0 (IT ^W)u u0 u |
(A.4)
For the information matrix, it is useful to use the formula given by Harville(1977):
Jrs = Eh - ∂2L=∂μr∂μssi = 2trh -1(@ u=aμr´ -1(@ u=aμβ´i,
(A.5)
for r; s = 1; 2; 3. The corresponding elements of the information matrix are given by
J11 = E h -
@2l 1 ι.\( ι (T ɪ й2] nt
a(¾°)2J = 2tr[⅛(It In)H = 2¾4;
@2L 1 1 2 NT2
J22 = El- J = 2tr⅛(Jt In)J = ι¾τ;
J33 = E h - @2L i =2 trh~Iτ (W + W 0)2i
= 1 tr[Iτ (2W2 + 2W 0W )] = Tb;
1 1 1 NT
J12 =2tr ⅛ (IT IN ) ¾° (JT IN )J = 2¾° ’
J13 = 1 trh A (It In )(It (W + W 0))i
2 l¾° -i
= TT12 tr[Iτ (W + W0)] = 0;
2¾2
20