Optimal Vehicle Size, Haulage Length, and the Structure of Transport Costs



transportation costs expression and then to divide by mito give a cost per ton measure,
thus:

1

TLCi/mi=21/2mi-2


z„ I               -Д ( Ia

(Si + a di)2 [I(Ci + b di) + Si]2 + di — + b

(13)


To observe the relationship between total logistics-transportation costs per ton and
haulage distance we take the first and second derivatives of (13) with respect to
haulage distance
di :

1

δ( TL Ci / mi)  a [I(C + b di) + ʌl


δdi


1

21/2m1/2(Si+ a di)2


Ib (Si+ a di)2

21/2m1i/2[I(ci+bdi)+Si]21

(14)


and:

2

δ( TLCi/ mi )


δdi2


a2 22 [I(Ci + b di) + Si]2

3
. 1/2zo      ,5

4mi (Si+a di)2


1

Ia b 22

1/2                      1

4mi (Si+ adi)[I(ci+bdi)+


Ia b 2

1

4mi (Si+adi)2[I(ci+bdi)+Si]
21                     1

b2 I 22 (Si+a di)2


1-

Si]2


3

4mi [I(ci+bdi)+Si]2


(15)

Equations (14) and (15) are always positive and negative, respectively; i.e. equation
(13) is strictly concave in distance, if either
a or b is zero. However, the general
conditions under which equation (13) is concave in distance is:

a2 [I(ci + b di) + si J + I2 b2 (Si + a di)2               2Ia b

3                         3         >                                          1

(Si+a di)2 [I(ci + b di) + siJ         (Si + a di)2[I(Ci + b di) + Si]2
thus:
a2 [I(Ci+bdi)+Si]-2Iab(Si+ adi)[I(Ci+bdi)+Si]+I2b2 (Si+ adi)2 0

and:

{a [I(Ci+bdi)+Si]-Ib(Si+adi)}> 0

This expression must always be true, except where:

a [I(Ci+bdi)+Si]=Ib(Si+adi)

i.e. when:

16



More intriguing information

1. INTERACTION EFFECTS OF PROMOTION, RESEARCH, AND PRICE SUPPORT PROGRAMS FOR U.S. COTTON
2. On the Relation between Robust and Bayesian Decision Making
3. Whatever happened to competition in space agency procurement? The case of NASA
4. New urban settlements in Belarus: some trends and changes
5. Moi individuel et moi cosmique Dans la pensee de Romain Rolland
6. The name is absent
7. Opciones de política económica en el Perú 2011-2015
8. Computational Batik Motif Generation Innovation of Traditi onal Heritage by Fracta l Computation
9. The name is absent
10. The name is absent