transportation costs expression and then to divide by mito give a cost per ton measure,
thus:
1
TLCi/mi=21/2mi-2
z„ I -Д ( Ia
(Si + a di)2 [I(Ci + b di) + Si]2 + di — + b
(13)
To observe the relationship between total logistics-transportation costs per ton and
haulage distance we take the first and second derivatives of (13) with respect to
haulage distance di :
1
δ( TL Ci / mi) a [I(C + b di) + ʌl
δdi
1
21/2m1/2(Si+ a di)2
Ib (Si+ a di)2
21/2m1i/2[I(ci+bdi)+Si]21
(14)
and:
2
δ( TLCi/ mi )
δdi2
a2 22 [I(Ci + b di) + Si]2
3
. 1/2zo ,5
4mi (Si+a di)2
1
Ia b 22
1/2 1
4mi (Si+ adi)[I(ci+bdi)+
Ia b 2
1
4mi (Si+adi)2[I(ci+bdi)+Si]
21 1
b2 I 22 (Si+a di)2
1-
Si]2
3
4mi [I(ci+bdi)+Si]2
(15)
Equations (14) and (15) are always positive and negative, respectively; i.e. equation
(13) is strictly concave in distance, if either a or b is zero. However, the general
conditions under which equation (13) is concave in distance is:
a2 [I(ci + b di) + si J + I2 b2 (Si + a di)2 2Ia b
3 3 > 1
(Si+a di)2 [I(ci + b di) + siJ (Si + a di)2[I(Ci + b di) + Si]2
thus:
a2 [I(Ci+bdi)+Si]-2Iab(Si+ adi)[I(Ci+bdi)+Si]+I2b2 (Si+ adi)2 > 0
and:
{a [I(Ci+bdi)+Si]-Ib(Si+adi)}> 0
This expression must always be true, except where:
a [I(Ci+bdi)+Si]=Ib(Si+adi)
i.e. when:
16