Table 11: MNL and ML estimation results
_________________MNL______________ |
MIX. LOGIT________________ | |||||
Attributes______________________ |
Coefficient |
T-value |
P-value |
Coefficient |
T-value |
P-value |
bedrooms |
-0.1268 |
-2.137 |
0.0326 |
-0.1556 |
-2.498 |
0.0125 |
monthly cost |
-0.0065 |
-5.632 |
0.0000 |
-0.0093 |
-6.382 |
0.0000 |
big city |
-0.9992 |
-8.311 |
0.0000 |
-1.516 |
-5.983 |
0.0000 |
small town |
0.2280 |
4.241 |
0.0000 |
0.2894 |
4.500 |
0.0000 |
travel costs |
-0.7359 |
-12.459 |
0.0000 |
-0.9794 |
-11.908 |
0.0000 |
travel time |
-0.0338 |
-4.652 |
0.0000 |
-0.0547 |
-5.424 |
0.0000 |
Heterogeneity: | ||||||
bedr*college/university |
0.1450 |
2.780 |
0.0054 |
0.2030 |
3.789 |
0.0002 |
bedr*working partner |
0.1530 |
2.980 |
0.0029 |
0.1807 |
3.579 |
0.0003 |
bedr*child |
0.2114 |
3.845 |
0.0001 |
0.2970 |
5.206 |
0.0000 |
bedr*large municip. |
0.2253 |
4.255 |
0.0000 |
0.2575 |
4.600 |
0.0000 |
bedr*apartment |
0.2981 |
4.360 |
0.0000 |
0.3971 |
6.149 |
0.0000 |
mnth cost*college/university |
0.0020 |
2.423 |
0.0154 |
0.0025 |
2.166 |
0.0303 |
mnth cost*child |
-0.0019 |
-2.271 |
0.0232 |
-0.0028 |
-2.398 |
0.0165 |
mnth cost*owned house |
0.0043 |
3.961 |
0.0001 |
0.0059 |
4.343 |
0.0000 |
big city*partner |
-0.2661 |
-3.478 |
0.0005 |
-0.3509 |
-2.242 |
0.0250 |
big city*child |
0.1713 |
2.524 |
0.0116 |
0.2426 |
1.808 |
0.0705 |
big city* large municip. |
0.6929 |
8.917 |
0.0000 |
1.0027 |
6.897 |
0.0000 |
big city*owned house |
0.2001 |
2.815 |
0.0049 |
0.3788 |
2.287 |
0.0222 |
big city*detached house |
-0.3844 |
-4.543 |
0.0000 |
-0.6838 |
-4.101 |
0.0000 |
big city*apartment |
0.6339 |
7.911 |
0.0000 |
1.0393 |
5.610 |
0.0000 |
big city*no fuel cost |
0.1795 |
2.795 |
0.0052 |
0.1797 |
1.400 |
0.1615 |
big city*income class 1 |
-0.2089 |
-2.208 |
0.0273 |
-0.3317 |
-1.765 |
0.0775 |
big city*income class 2 |
-0.1898 |
-2.706 |
0.0068 |
-0.2219 |
-1.599 |
0.1099 |
small town*large municip. |
0.1489 |
2.317 |
0.0205 |
0.1763 |
2.268 |
0.0233 |
small town*gasoline car |
0.1455 |
2.423 |
0.0154 |
0.2245 |
3.001 |
0.0027 |
small town*income class 1 |
-0.2281 |
-3.071 |
0.0021 |
-0.2744 |
-3.168 |
0.0015 |
travel costs*region congest. |
-0.0653 |
-1.989 |
0.0467 |
-0.0746 |
-1.454 |
0.1460 |
travel costs*apartment |
0.1609 |
4.187 |
0.0000 |
0.1767 |
2.398 |
0.0165 |
travel costs*work home |
0.0653 |
1.989 |
0.0467 |
0.0980 |
1.867 |
0.0619 |
travel costs*tta5175 |
0.1278 |
2.396 |
0.0166 |
0.1573 |
2.399 |
0.0164 |
travel costs*tta76m |
0.3667 |
7.534 |
0.0000 |
0.4285 |
6.778 |
0.0000 |
travel costs*income class 2 |
0.1388 |
3.347 |
0.0008 |
0.0935 |
1.389 |
0.1650 |
travel costs*income class 3 |
0.1620 |
3.424 |
0.0006 |
0.1615 |
2.266 |
0.0234 |
travel time*dep. time constr. |
0.0122 |
2.292 |
0.0219 |
0.0129 |
1.496 |
0.1347 |
travel time*tta5175 |
0.0143 |
1.823 |
0.0683 |
0.0223 |
2.087 |
0.0369 |
travel time*tta76m |
0.0215 |
2.927 |
0.0034 |
0.0388 |
3.702 |
0.0002 |
travel time*tte030 |
-0.0092 |
-2.466 |
0.0137 |
-0.0110 |
-2.180 |
0.0293 |
st. dev. random parameters: | ||||||
monthly cost |
- |
0.0076 |
2.424 |
0.0153 | ||
big city |
- |
1.5617 |
11.094 |
0.0000 | ||
travel costs |
- |
0.7416 |
8.801 |
0.0000 | ||
travel time |
- |
0.0348 |
2.079 |
0.0376 | ||
Halton simul. |
- |
150 (number) | ||||
adjusted p2 |
0.2447 |
0.3096 | ||||
-2LogLikelihood |
-2638.1 |
_________-2406.6 |
Table 11 shows preferences for five aspects in detail: the number of bedrooms, the location,
the monthly cost of housing and travel cost and time. First of all looking at ‘bedrooms’, the
21
More intriguing information
1. Urban Green Space Policies: Performance and Success Conditions in European Cities2. The name is absent
3. Hemmnisse für die Vernetzungen von Wissenschaft und Wirtschaft abbauen
4. The name is absent
5. Concerns for Equity and the Optimal Co-Payments for Publicly Provided Health Care
6. Delivering job search services in rural labour markets: the role of ICT
7. The name is absent
8. Human Resource Management Practices and Wage Dispersion in U.S. Establishments
9. Ongoing Emergence: A Core Concept in Epigenetic Robotics
10. Towards Teaching a Robot to Count Objects