The urban sprawl dynamics: does a neural network understand the spatial logic better than a cellular automata?



Annexe 1 -Parameters in the SOM processing

1. net architecture

Input Unit

Number of units in the input vector (12)

K Units

Number of units in the output matrix (from 9 to 49, depending on the simulation)

K Rows

Number of rows in the output matrix (from 3 to 7, depending on the simulation)

K Cols

Number of columns in the output matrix (from 3 to 7, depending on the simulation)

K Dimension

Output matrix dimensions (2)

K Topology

Output matrix space topology (Euclidean)

N Topology_________

Winner unit neighbourhood space topology (square)___________________________________

2. parameters

N function

Parameter defining the function to update the units connections in the WU neighbourhood
(Gaussian)____________________________________________________________________________

Alpha Max_________

Maximum width for the Nfunction (1)____________________________________________

Alpha Min__________

Minimum width for the Nfunction (0)_______________________________________________

Alpha Inc___________

Factor reducing Alpha Max in each epoch (0.01)______________________________________

Set Weight___________

Maximum weight value during the initialisation_________________________________________

Alpha W Func______

Input/output weights correction function (constant)________________________________________

Alpha W Max_______

Initial value of weight correction factor (0.1)_______________________________________________

Alpha WMin_______

Minimum value of weight correction factor (0)_______________________________________

Alpha W Inc________

Decreasing amount of the weight correction factor (0.001)_______________________________

Epochs

The epochs number for an experiment is automatically calculated by this formula:

A A AlphaMax - AlphaMin
Epochs
=------------------

AlphaInc

3. Input record

I Patterns               Number of records in the input sample (2703)

19



More intriguing information

1. The name is absent
2. Climate change, mitigation and adaptation: the case of the Murray–Darling Basin in Australia
3. Portuguese Women in Science and Technology (S&T): Some Gender Features Behind MSc. and PhD. Achievement
4. The name is absent
5. Financial Market Volatility and Primary Placements
6. Migration and employment status during the turbulent nineties in Sweden
7. Credit Market Competition and Capital Regulation
8. The Mathematical Components of Engineering
9. MANAGEMENT PRACTICES ON VIRGINIA DAIRY FARMS
10. Regional dynamics in mountain areas and the need for integrated policies