Electromagnetic induction
Analogously to defining the flux ΦD of the vector of the electric induction D we
can define the flux ΦB of the vector of the magnetic induction B :
(33)
φ b = ∫∫ Bds
(s)
It is useful to know that the change in the magnetic flux generates inducted
voltage VΦ according to the Lenz’s law:
(34)
(35)
V =- dΦB
φ dt
— — ^-π d Φ B
φ E ∙ dl = -B
[ dt
Thus the Lenz’s law shows that there will be induced current if there is a static
cable inside changing magnetic field:
(36)
——
VΦ=-∫∫>d
∂t
(s) ∂t
or if the cable is moving inside a static magnetic field:
(37)
— —
Vφ = -F × B] ∙ l
The full magnetic flux ΦL of the self-inducted magnetic field B by contour with
current i is called self-inducted flux. The self-inducted flux is linear function of
the current:
(38)
26
More intriguing information
1. The name is absent2. Commuting in multinodal urban systems: An empirical comparison of three alternative models
3. Benchmarking Regional Innovation: A Comparison of Bavaria, Northern Ireland and the Republic of Ireland
4. Dynamiques des Entreprises Agroalimentaires (EAA) du Languedoc-Roussillon : évolutions 1998-2003. Programme de recherche PSDR 2001-2006 financé par l'Inra et la Région Languedoc-Roussillon
5. Qualification-Mismatch and Long-Term Unemployment in a Growth-Matching Model
6. Explaining Growth in Dutch Agriculture: Prices, Public R&D, and Technological Change
7. The name is absent
8. Expectation Formation and Endogenous Fluctuations in Aggregate Demand
9. The name is absent
10. Multi-Agent System Interaction in Integrated SCM