51. Fujii & Koizumi (1999). Identification of the binding region of basic
calponin on α- and β-tubulins. Japanese Biochemical Society:125(5),
869-875.
52. Fygenson, D. K. (1995). Microtubules: the rhythm of growth and evolution
of form. Ph.D. Princeton University, Princeton.
53. Fygenson, D. (2001). A Unifying Hypothesis for the Conformational
Change of Tubulin. http://arxiv.org/pdf/physics/0101078
54. Fygenson, D. K., Braun, E. & Libchaber, A. (1994). Phase diagram of
microtubules. Physical Review. E. Statistical Physics, Plasmas, Fluids,
and Related Interdisciplinary Topics. 50:1579-1588.
55. Georgiev, D. (2003). On the dynamic timescale of mind-brain interaction.
In Proceedings Quantum Mind 2003: "Consciousness, Quantum Physics
and the Brain", Convention Center and Leo Rich Theater, Tucson,
Arizona.
56. Ghiso, J., Plant, G.T., Levy, E., Wisniewski, T. & Baumann, M.H. (1996).
C-terminal fragments of α- and β-tubulin form amyloid fibrils in vitro and
associate with amyloid deposits of familial cerebral amyloid angiopathy,
British type. Biochem. Biophys. Res. Commun. 219: 238- 242
57. Gittes, F., Mickey, E. & Nettleton, J. (1993). Flexural rigidity of
microtubules and actin filaments measured from thermal fluctuations in
shape. J. Cell Biol., 120:923
58. Gundersen, G.G., Kalnoski, M.H. & Bulinski, J.C. (1984). Distinct
populations of microtubules: tyrosinated and nontyrosinated α-tubulin are
distributed differently in vivo. Cell 38(3):779-789.
59. Hall, J.L., Gilmartin, M.E., Cowan, N.J. & Lewis, S.A. (1985). Three
expressed sequences within the human β-tubulin multigene family each
define a distinct isotype. J. Mol. Biol. 182: 11- 20
60. Hameroff, SR. (1987). Ultimate Computing: Biomolecular Consciousness
and Nanotechnology. Elsevier-North Holland, Amsterdam.
84