102. Mavromatos, N.E. & Nanopoulos, D.V. (1998). Quantum Mechanics in
Cell Microtubules: Wild Imagination or Realistic Possibility?
http://arXiv.org/abs/quant-ph/9802063
103. Mavromatos, N.E., Nanopoulos, D.V., Samaras, I. & Zioutas, K. (1998).
Ferroelectrics and their possible involvement in biology.
http://arXiv.org/abs/quant-ph/9803005
104. Mavromatos, N.E., Mershin, A. & Nanopoulos, D.V. (2002). QED-Cavity
model of microtubules implies dissipationless energy transfer and
biological quantum teleportation. http://arxiv.org/abs/quant-ph/0204021
105. Mayer, M.L. & Vyklicky, L. Jr. (1989). Concanavalin A selectively reduces
desensitization of mammalian neuronal quisqualate receptors. Proc Natl
Acad Sci U S A. 86(4):1411-1415.
106. McEwen, B. & Edelstein, S.J. (1980). Evidence for a mixed lattice in
microtubules reassembled in vitro. J. Mol. Biol. 139, 123-145.
107. McKean, P.G., Vaughan, S. & Gull, K. (2001). The extended tubulin
superfamily. Journal of Cell Science 114 (15) 2723-2733
108. McRae, T. H. (1997). Tubulin post-translational modifications: enzymes
and their mechanisms of action. Eur. J. Biochem. 244, 265-278.
109. Melki, R., Carlier, M.F., Pantaloni, D., Timasheff, S.N. (1989). Cold
depolymerization of microtubules to double rings: geometric stabilization
of assemblies. Biochemistry 28, 9143-9152.
110. Mershin, A. (2003). Experimental "quantum brain"? In Proceedings
Quantum Mind 2003: "Consciousness, Quantum Physics and the Brain",
Convention Center and Leo Rich Theater, Tucson, Arizona.
111. Mershin, A., Nanopoulos D.V., Skoulakis E.M.C. (1999). Proceedings of
the Academy of Athens, 74.
112. Mickey, B. & Howard, J. (1995). Rigidity of microtubules is increased by
stabilizing agents. J. Cell Biol., 130:909-917
113. Miller, J.P. (1980). Cytoplasmic resistivity of neurons in the lobster
stomatogastric ganglion. http://cns.montana.edu/~zane/Cytoplasmic.htm
89