Diekmann, U., and R. Law, 1996, The dynamical theory of
coevolution: a derivation from stochastic ecological processes,
Journal of Mathematical Biology, 34:579-612.
Dretske, F., 1994, The explanatory role of information,
Philosophical Transactions of the Royal Society A, 349:59-70.
Emery, M., 1989, Stochastic Calculus on Manifolds,
Springer, New York.
English, T., 1996, Evaluation of evolutionary and genetic
optimizers: no free lunch. In Fogel, L, P. Angeline, and T.
Back (eds.), Evolutionary Programming V: Proceedings of the
Fifth Annual Conference on Evolutionary Programming, 163-
169, MIT Press, Cambridge, MA.
Erdos, P., and A. Renyi, 1960, On the evolution of random
graphs. Reprinted in The Art of Counting, 1973, 574-618,
and inn Selected Papers of Alfred Renyi, 1976, 482-525.
Ficici, S., O. Milnik, and J. Pollak, 2005, A game-theoretic
and dynamical systems analysis of selection methods in co-
evolution, IEEE Transactions on Evolutionary Computation,
9:580-602.
Feynman, R., 2000, Lectures on Computation, Westview
Press, New York.
Foley, D., J. Craid, R. Morley, C. Olsson, T. Dwyer, K.
Smith, and R. Saffery, 2009, Prospects for epigenetic epidemi-
ology, American Journal of Epidemiology, 169:389-400.
Gilbert, S., 2001, Mechanisms for the environmental regu-
lation of gene expression: ecological aspects of animal devel-
opment, Journal of Bioscience, 30:65-74.
Golubitsky, M., and I. Stewart, 2006, Nonlinear dynamics
and networks: the groupoid formalism, Bulletin of the Amer-
ican Mathematical Society, 43:305-364.
Goubault, E., and M. Raussen, 2002, Dihomotopy as a tool
in state space analysis, Lecture Notes in Computer Science,
Vol. 2286, April, 2002, pp. 16-37, Springer, New York.
Goubault, E., 2003, Some geometric perspectives on con-
currency theory, Homology, Homotopy, and Applications,
5:95-136.
Guerrero-Bosagna, C., P. Sabat, and L. Valladares, 2005,
Environmental signaling and evolutionary change: can expo-
sure of pregnant mammals to environmental estrogens lead
to epigenetically induced evolutionary changes in embryos?,
Evolutiona and Development, 7:341-350.
Holling, C., 1992, Cross-scale morphology, geometry and
dynamicsl of ecosystems, Ecological Monographs, 41:1-50.
Jablonka E., and M. Lamb, 1995, Epigenetic Inheritance
and Evolution: The Lamarckian Dimension, Oxford Univer-
sity Press, Oxford, UK.
Jablonka, E., and M. Lamb, 1998, Epigenetic inheritance
in evolution, Journal of Evolutionary Biology, 11:159-183.
Jablonka, E., 2004, Epigenetic epidemiology, International
Journal of Epidemiology, 33:929-935.
Jaeger, J., S. Surkova, M. Blagov, H. Janssens, D. Kosman,
K. Kozlov, M. Manu, E. Myasnikova, C. Vanario-Alonso, M.
Samsonova, D. Sharp, and J. Reintiz, 2004, Dynamic con-
trol of positional information in the early Drosophila embryo,
Nature, 430:368-371.
Jaenisch, R., and A. Bird, 2003, Epigenetic regulation of
gene expression: how the genome integrates intrinsic and en-
vironmental signals, Nature Genetics Supplement, 33:245-254.
Kastner, M., 2006, Phase transitions and configuration
space topology. ArXiv cond-mat/0703401.
Khinchin, A., 1957, Mathematical Foundations of Informa-
tion Theory, Dover, New York.
Krebs, P., 2005, Models of cognition: neurological possi-
bility does not indicate neurological plausibility. In Bara,
B., L. Barsalou, and M. Bucciarelli (eds.), Proceedings of
CogSci 2005, pp. 1184-1189, Stresa, Italy. Available at
http//cogprints.org/4498/.
Landau, L., and E. Lifshitz, 2007, Statistical Physics, 3rd
Edition, Part I, Elsevier, New York.
Lee, J., 2000, Introduction to Topological Manifolds,
Springer, New York.
Maas, W., T. Natschlager, and H. Markram, 2002, Real-
time computing without stable states: a new framework for
neural computation based on perturbations, Neural Compu-
tation, 14:2531-2560.
Matsumoto, Y., 2002, An Introduction to Morse Theory,
American Mathematical Society, Providence, RI.
Maturana, H., and F. Varela, 1980, Autopoiesis and Cogni-
tion, Reidel Publishing Company, Dordrecht, Holland.
Maturana, H., and F. Varela, 1992, The Tree of Knowledge,
Shambhala Publications, Boston, MA.
Mjolsness, E., D. Sharp, and J. Reinitz, 1991, A connec-
tionist model of development, Journal of Theoretical Biology,
152:429-458.
O’Nuallain, S., 2008, Code and context in gene expres-
sion, cognition, and consciousness. Chapter 15 in Barbiere,
M., (ed.), The Codes of Life: The Rules of Macroevolution,
Springer, New York, pp. 347-356.
O’Nuallain, S., and R. Strohman, 2007, Genome and nat-
ural language: how far can the analogy be extended? In
Witzany, G., (ed.), Proceedings of Biosemiotics, Tartu Uni-
versity Press, Umweb, Finland.
Pettini, M., 2007, Geometry and Topology in Hamiltonian
Dynamics and Statistical Mechanics, Springer, New York.
Pratt, V., 1991, Modeling concurrency with geometry, Pro-
ceedings of the 18th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 311-322.
Reinitz, J., and D. Sharp, 1995, Mechanisms of even stripe
formation, Mechanics of Development 49:133-158.
Scherrer, K., and J. Jost, 2007a, The gene and the genon
concept: a functional and information-theoretic analysis,
Molecular Systems Biology 3:87.
Scherrer, K., and J. Jost, 2007b, Gene and genon concept:
coding versus regulation, Theory in Bioscience 126:65-113.
Sharp, D., and J. Reinitz, 1998, Prediction of mutant ex-
pression patterns using gene circuits, BioSystems, 47:79-90.
Skierski, M., A. Grundland, and J. Tuszynski, 1989, Analy-
sis of the three-dimensional time-dependent Landau-Ginzburg
equation and its solutions, Journal of Physics A (Math.
Gen.), 22:3789-3808.
Toulouse, G., S. Dehaene, and J. Changeux, 1986, Spin
glass model of learning by selection, Proceedings of the Na-
tional Academy of Sciences, 83:1695-1698.
25