The name is absent



THE RISE OF FUNCTIONS                  11

whether an analytic function of t has to be indeed analytic throughout, or
may be only piecewise analytic in finitely many adjoining intervals
[4, pp. 287-288].

At first glance, the formation of a functional object by putting together
pieces of analytic or other “well-defined” functions may appear to be,
mathematically, a makeshift operation, an ingenuous one. But the 19th
century learned to respect, explore, and exploit such formations; and in the
20th century there would hardly be any topology if it were not for Simplicial
and related decompositions and approximations.

Trigonometric Series. Amidst all its uncertainties about the nature of a
function, the 18th century somehow managed to make the capital discovery
— which, in a way, has been unmatched since — that functions of a very
“general” class can be represented in the form

OO

(5)            /(-x)=⅛Λq+ ∑ (u,,cosmx + bπsinnx).

n= 1

In the early 19th century, Fourier greatly emphasized what had been
known before, that for a given/(x) the corresponding “Fourier coefficients”
in the expansion (5) usually have the values

If»                   1 f“ .

(6)      a,, = /(x)cosnxrfx, b„ = — I /(x)sinnxrfx,

π J-π                    π

and he also greatly emphasized that “any” function/(x) has a representation
(5), even if the function is
absolument arbitraire.

As it turned out, this absolument arbitraire was a great “challenge”
(à la Toynbee), and, in a sense, the creation of the theory of functions of a
real variable was a “response” to this challenge.

Firstly, Dirichlet made the following contributions (1829-1837):

(i) He gave his famed “definition” of a truly “arbitrary” numerical
function
y = /(x), as a “general” correspondence from x to y.

(ii) He introduced perhaps for the first time — a specific class of
functions of a real variable to a
specific purpose. It was the class of piecewise
monotone functions; and Dirichlet established the fact that for such a
function the Fourier series converges at all points.

(After the rise of set theory, towards the end of the 19th century, these
functions of Dirichlet “engendered” functions of bounded variation and
also rectifiable curves.)

Secondly, Riemann made the following contributions (1854, published
1867):



More intriguing information

1. The name is absent
2. The name is absent
3. The name is absent
4. El Mercosur y la integración económica global
5. Telecommuting and environmental policy - lessons from the Ecommute program
6. The name is absent
7. The name is absent
8. ANTI-COMPETITIVE FINANCIAL CONTRACTING: THE DESIGN OF FINANCIAL CLAIMS.
9. Macro-regional evaluation of the Structural Funds using the HERMIN modelling framework
10. Nietzsche, immortality, singularity and eternal recurrence1
11. Campanile Orchestra
12. Wirkung einer Feiertagsbereinigung des Länderfinanzausgleichs: eine empirische Analyse des deutschen Finanzausgleichs
13. Naïve Bayes vs. Decision Trees vs. Neural Networks in the Classification of Training Web Pages
14. For Whom is MAI? A theoretical Perspective on Multilateral Agreements on Investments
15. The name is absent
16. LABOR POLICY AND THE OVER-ALL ECONOMY
17. Business Cycle Dynamics of a New Keynesian Overlapping Generations Model with Progressive Income Taxation
18. The Structure Performance Hypothesis and The Efficient Structure Performance Hypothesis-Revisited: The Case of Agribusiness Commodity and Food Products Truck Carriers in the South
19. Prevalence of exclusive breastfeeding and its determinants in first 6 months of life: A prospective study
20. The bank lending channel of monetary policy: identification and estimation using Portuguese micro bank data