The Role of Immigration in Sustaining the Social Security System: A Political Economy Approach



following function: F(τ) = ((1 + 1-αατ)1+β(1 - τ)βα) C) x
rewrite the policy decision rule of the tax rate as: F(τt) = kt.

thus we can

The function


F(τ) is decreasing in τ, for τ [0, τ], where τ = ^1++++0^, and increasing in
τ, for τ
[τ, 1]. Thus, according to equation (52), for every value of capital per
(native-born) worker, k
t, there are two solutions for τ(kt) in the range [0, 1).

The solution which satisfies the equilibrium conditions, which is denoted by
τ
(kt), is decreasing in kt for kt [F(τ),F(0)].

The solution for the policy variables given in equations (52) and (53), will
be proved to satisfy the first order conditions of the problem. Substituting for
wtlt(1 -τt) and 1 +rt+1 from equations (39) and (40), the young voter’s indirect
utility function under the assumption that next period decisive voter is young,
which sets next period policy decision rules for the tax rate and immigration
quotas to be
τt+1 = τ (kt+1),and γt+1 = 1 respectively, can be written in its
Lagrangian form as follows:

L(kt) = A +(1 + β)Log ((1 - α)ktα(1+ γt)-α(1 - τ t))' +

(1 + β)Log[(1 + βf (τ(kt+ι)) + βLogα ((1 - α)k-2ψ (1 - τ (kt+ι)))'
λk         β Ψ (1+Yt ) ((1 - α)k? (1+γ t )- α (1 τ t)) ψ+α (1-f(τ(kt+1)),

(54)


(55)


λ1(kt + 1   ι+β Ψ + 1                   1+n+γt(1+m)                  )

-λ2t - 1) - λ3(-τt) - λ4t - 1) - λ5t)

The Kuhn-Tucker conditions are:

∂L       1 + Ψ 1 + β    1 + Ψ kt+1

=— = 0= --— --λl-— τ--λ2+λ3

∂τt       Ψ + α 1 - τt    Ψ + α 1 - τt

∂L         1 + Ψ 1 + β     kt+1

-— = 0= -a-------+λι-----

∂γt         Ψ + α 1 + γt 1 + γt


n-m

∖1 + n + γt(1 + m)


1+Ψ

a—---

Ψ+α


-λ4+λ5

(56)


∂L

∂kt+ι


f β(1 + β)           λ1kt+1 ʌ df (τt+1) (kt+1(

V + βf (τ(kt+1)) 1 - f (τ(kt+1))√ t+1 dkt+1 l


β(1 - a)1 (kt+1) + 1

ψ + a 1 - τ (kt+1) dkt+1    kt+1


(βψ ψ1-^ )

Ψ+a


-λ1


k = β ψ (1 + γt)wtlt(1 - τt)(1 - f (τ(kt+1))
t+1   1+ β Ψ + 1       1+ n + γt(1 + m)


(58)


τt - 1 0, λ2 0 and λ2 (τt - 1) = 0                (59)


-τt 0, λ3 0 and λ3 (-τt) = 0                 (60)

γt - 1 0, λ4 0 and λ4(γt - 1) = 0               (61)

-γt 0, λ5 0 and λ5 (γt) = 0                   (62)


29




More intriguing information

1. THE CHANGING RELATIONSHIP BETWEEN FEDERAL, STATE AND LOCAL GOVERNMENTS
2. Keynesian Dynamics and the Wage-Price Spiral:Estimating a Baseline Disequilibrium Approach
3. The name is absent
4. Secondary stress in Brazilian Portuguese: the interplay between production and perception studies
5. Growth and Technological Leadership in US Industries: A Spatial Econometric Analysis at the State Level, 1963-1997
6. TINKERING WITH VALUATION ESTIMATES: IS THERE A FUTURE FOR WILLINGNESS TO ACCEPT MEASURES?
7. Are Public Investment Efficient in Creating Capital Stocks in Developing Countries?
8. Effects of a Sport Education Intervention on Students’ Motivational Responses in Physical Education
9. Fiscal Sustainability Across Government Tiers
10. The name is absent