Table A3: Correlation between interactions using different skill measures
(1) (2) (3) (4) (5) (6) (T) (S) (9) (10) (11)
ti,t-ι :: ΔSKij,^1 1- I(ASKijt~j > 0)
3i,f-1 τ ΔS⅛-ι τ I(ΔSK,j^1 > 0)
¾,(-ι T ΔSI⅛m T I(ΔSKi.i.f-1 > 0)
ASKiit ". AGDPijt: INTl
ASKiit :: SGDPijt: INT2
-ASKijt :: AGDPijt: INT3
(ASKijt)1:: Iog(DISTij): INT4
Secondary school enrollment
ti,t-1 × ΔS¼t~1 × I(ΔS¼t~1 > 0)
δi,t-1 × ΔS¼t~1 × I(ΔS^,f-1 > 0)
ʤ,t-i × ASKij,t-1 × I(ASKijtt-1 > 0)
ASKijt × AGDPijt: INTl
ASKijt × TGDPijt: INT2
θ0 -ASKijt × AGDPijt: INT3
∞ (ASKijt)2X log(D ISTij'): INT4
Capital stocks per worker
ti,t-ι × ASKijtt-ι × I(ΔS,A⅛jjt-ι > 0)
<5⅛,t-ι × ASKijtt-ι × I(ASKijtt-ι > 0)
ʤ,t-i × ASKijtt-1 × KASKijtt-1 > 0)
ASKijt × AGDPijt: INTl
ASKijt × TGDPijt: INT2
-ASKijt × AGDPijt: INT3
(ASKijt)1:: Iog(DISTij): INT4
Skill measure as proposed
by Markusen (2002)
ti,t-ι × ASKijtt-ι × I(ASKijtt-ι > 0)
<5⅛,t-ι × ASKijtt-ι × I(ASKijtt-ι > 0)
ʤ,t-i × ASKijtt-1 × I(ASKijtt-1 > 0)
ASKijt × AGDPijt: INTl
ASKijt × TGDPijt: INT2
-ASKijt × AGDPijt: INT3
(ASKijt)2X Iog(DISTij): INT4
Tertiary school enrollment
(1) 1
(2) 0.95 1
(3) 0.93 0.96 1
(4) -0.30 -0.35 -0.35 1
(5) 0.96 0.99 0.97 -0.36 1
(6) -0.06 -0.06 -0.06 0.02 -0.06 1
(7) 0.50 0.52 0.51 -0.26 0.53 0.66 1
(8) 0.16 0.12 0.11 0.07 0.14 -0.05 0.04 1
(9) 0.13 0.11 0.09 0.08 0.12 -0.04 0.03 0.99 1
(10) 0.11 0.08 0.10 0.06 0.10 -0.04 0.03 0.98 0.99 1
(11) 0.04 0.07 0.05 0.18 0.07 0.00 -0.01 0.69 0.70 0.70 1
(12) 0.13 0.11 0.10 0.07 0.13 -0.04 0.04 0.99 1.00 0.99 0.72
(13) 0.00 0.01 0.02 -0.03 0.02 0.04 -0.02 -0.08 -0.07 -0.07 0.0C
(14) 0.06 0.06 0.06 0.08 0.07 -0.05 -0.07 0.60 0.61 0.61 0.5C
(15) 0.05 -0.04 -0.06 0.16 -0.05 0.00 -0.02 0.03 0.01 0.02 0.0C
(16) -0.06 -0.08 -0.10 0.16 -0.11 0.00 -0.07 -0.01 0.00 0.00 -0.01
(17) -0.06 -0.07 0.04 0.08 -0.08 0.00 -0.04 -0.07 -0.06 0.01 -0.0E
(18) 0.12 0.07 0.08 0.17 0.07 -0.01 0.01 0.01 0.01 0.01 0.01
(19) 0.10 0.06 0.05 0.09 0.05 -0.03 -0.03 0.05 0.04 0.05 0.01
(20) 0.18 0.14 0.13 0.01 0.14 -0.05 0.03 0.03 0.02 0.01 -0.04
(21) -0.02 -0.04 -0.05 0.09 -0.07 0.03 -0.01 -0.05 -0.06 -0.04 -0.05
(22) |
0.05 |
0.01 |
0.02 |
0.04 |
0.02 |
-0.03 |
-0.09 |
0.11 |
0.12 |
0.11 |
0.1C |
(23) |
0.00 |
-0.01 |
-0.01 |
0.02 |
-0.01 |
-0.04 |
-0.12 |
0.10 |
0.10 |
0.10 |
o.os |
(24) |
0.01 |
0.01 |
0.06 |
0.03 |
0.01 |
-0.05 |
-0.10 |
0.08 |
0.09 |
0.11 |
0.05 |
(25) |
-0.08 |
-0.07 |
-0.07 |
-0.05 |
-0.07 |
0.01 |
-0.02 |
-0.04 |
-0.03 |
-0.02 |
-0.04 |
(26) |
-0.06 |
-0.02 |
-0.02 |
-0.07 |
-0.02 |
-0.01 |
0.00 |
-0.07 |
-0.07 |
-0.06 |
-0.01 |
(27) |
-0.02 |
-0.01 |
-0.01 |
0.01 |
-0.02 |
0.00 |
-0.02 |
0.06 |
0.08 |
0.07 |
0.0S |
(28) |
-0.02 |
0.02 |
0.02 |
-0.05 |
0.02 |
-0.03 |
-0.01 |
-0.02 |
0.00 |
0.00 |
0.07 |
(12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28)
'. 1
) -0.07 1
) 0.62 0.64 1
) 0.01 -0.23 -0.17 1
. -0.01 -0.27 -0.20 0.76 1
; -0.05 -0.11 -0.09 0.60 0.62 1
0.01 0.06 0.07 0.17 0.09 0.08 1
0.04 -0.16 -0.09 0.38 0.36 0.24 0.11 1
I 0.01 -0.09 -0.07 0.07 0.02 -0.02 0.09 0.88 1
! -0.07 -0.11 -0.13 0.56 0.55 0.62 0.09 0.31 0.25 1
) 0.12 0.05 0.12 0.28 0.19 0.17 0.12 0.10 -0.03 0.06 1
I 0.11 0.08 0.13 0.16 0.20 0.15 0.09 0.06 -0.07 0.01 0.94 1
! 0.10 0.07 0.13 0.22 0.23 0.42 0.10 0.07 -0.08 0.16 0.90 0.92 1
I -0.03 0.01 -0.02 -0.04 -0.03 0.00 -0.40 -0.23 -0.23 -0.02 -0.09 -0.08 -0.07 1
. -0.06 0.10 0.02 -0.18 -0.17 -0.08 -0.25 -0.33 -0.28 -0.16 -0.10 -0.08 -0.06 0.68 1
I 0.08 -0.06 0.01 -0.02 0.00 0.00 -0.01 0.01 -0.06 -0.09 0.02 0.01 0.00 0.01 -0.02 1
' 0.00 0.05 0.03 -0.24 -0.22 -0.12 -0.25 -0.28 -0.24 -0.28 -0.09 -0.08 -0.07 0.48 0.66 0.50 1
More intriguing information
1. ROBUST CLASSIFICATION WITH CONTEXT-SENSITIVE FEATURES2. The name is absent
3. The name is absent
4. The name is absent
5. Magnetic Resonance Imaging in patients with ICDs and Pacemakers
6. The Distribution of Income of Self-employed, Entrepreneurs and Professions as Revealed from Micro Income Tax Statistics in Germany
7. The name is absent
8. The name is absent
9. fMRI Investigation of Cortical and Subcortical Networks in the Learning of Abstract and Effector-Specific Representations of Motor Sequences
10. TLRP: academic challenges for moral purposes