Corporate Taxation and Multinational Activity



Table A3: Correlation between interactions using different skill measures

(1)    (2)    (3)    (4)    (5)    (6)    (T)    (S)    (9)    (10) (11)

ti,t-ι :: ΔSKij,^1 1- I(ASKijt~j > 0)
3i,f-1 τ ΔS⅛-ι τ I(ΔSK,j^1 > 0)
¾,(-ι T
ΔSI⅛m T I(ΔSKi.i.f-1 > 0)
ASKiit ". AGDPijt: INTl

ASKiit :: SGDPijt: INT2

-ASKijt :: AGDPijt: INT3

(ASKijt)1:: Iog(DISTij): INT4

Secondary school enrollment

ti,t-1 × ΔS¼t~1 × I(ΔS¼t~1 > 0)
δi,t-1 × ΔS¼t~1 × I(ΔS^,f-1 > 0)

ʤ,t-i × ASKij,t-1 × I(ASKijtt-1 > 0)
ASKijt × AGDPijt: INTl

ASKijt × TGDPijt: INT2

θ0 -ASKijt × AGDPijt: INT3

∞ (ASKijt)2X log(D ISTij'): INT4

Capital stocks per worker

ti,t-ι × ASKijtt × I(ΔS,A⅛jjt-ι > 0)

<5⅛,t-ι × ASKijtt-ι × I(ASKijtt > 0)
ʤ,t-i ×
ASKijtt-1 × KASKijtt-1 > 0)
ASKijt × AGDPijt: INTl

ASKijt × TGDPijt: INT2

-ASKijt × AGDPijt: INT3

(ASKijt)1:: Iog(DISTij): INT4

Skill measure as proposed
by Markusen (2002)

ti,t-ι × ASKijtt-ι × I(ASKijtt > 0)

<5⅛,t-ι × ASKijtt-ι × I(ASKijtt > 0)
ʤ,t-i ×
ASKijtt-1 × I(ASKijtt-1 > 0)
ASKijt × AGDPijt: INTl

ASKijt × TGDPijt: INT2

-ASKijt × AGDPijt: INT3
(ASKijt)2X Iog(DISTij): INT4


Tertiary school enrollment
(1) 1

(2)   0.95    1

(3)   0.93  0.96    1

(4)  -0.30 -0.35 -0.35    1

(5)   0.96  0.99  0.97 -0.36    1

(6)  -0.06 -0.06 -0.06  0.02 -0.06    1

(7)   0.50  0.52  0.51 -0.26  0.53  0.66    1

(8)   0.16  0.12  0.11  0.07  0.14 -0.05  0.04    1

(9)   0.13  0.11  0.09  0.08  0.12 -0.04  0.03  0.99    1

(10)  0.11  0.08  0.10  0.06  0.10 -0.04  0.03  0.98  0.99    1

(11)  0.04  0.07  0.05  0.18  0.07  0.00 -0.01  0.69  0.70  0.70    1

(12)  0.13  0.11  0.10  0.07  0.13 -0.04  0.04  0.99  1.00  0.99  0.72

(13)  0.00  0.01  0.02 -0.03  0.02  0.04 -0.02 -0.08 -0.07 -0.07  0.0C

(14)  0.06  0.06  0.06  0.08  0.07 -0.05 -0.07  0.60  0.61  0.61  0.5C

(15)  0.05 -0.04 -0.06  0.16 -0.05  0.00 -0.02  0.03  0.01  0.02  0.0C

(16) -0.06 -0.08 -0.10  0.16 -0.11  0.00 -0.07 -0.01  0.00  0.00 -0.01

(17) -0.06 -0.07  0.04  0.08 -0.08  0.00 -0.04 -0.07 -0.06  0.01 -0.0E

(18)  0.12  0.07  0.08  0.17  0.07 -0.01  0.01  0.01  0.01  0.01  0.01

(19)  0.10  0.06  0.05  0.09  0.05 -0.03 -0.03  0.05  0.04  0.05  0.01

(20)  0.18  0.14  0.13  0.01  0.14 -0.05  0.03  0.03  0.02  0.01 -0.04

(21) -0.02 -0.04 -0.05  0.09 -0.07  0.03 -0.01 -0.05 -0.06 -0.04 -0.05

(22)

0.05

0.01

0.02

0.04

0.02

-0.03

-0.09

0.11

0.12

0.11

0.1C

(23)

0.00

-0.01

-0.01

0.02

-0.01

-0.04

-0.12

0.10

0.10

0.10

o.os

(24)

0.01

0.01

0.06

0.03

0.01

-0.05

-0.10

0.08

0.09

0.11

0.05

(25)

-0.08

-0.07

-0.07

-0.05

-0.07

0.01

-0.02

-0.04

-0.03

-0.02

-0.04

(26)

-0.06

-0.02

-0.02

-0.07

-0.02

-0.01

0.00

-0.07

-0.07

-0.06

-0.01

(27)

-0.02

-0.01

-0.01

0.01

-0.02

0.00

-0.02

0.06

0.08

0.07

0.0S

(28)

-0.02

0.02

0.02

-0.05

0.02

-0.03

-0.01

-0.02

0.00

0.00

0.07


(12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28)

'. 1

) -0.07    1

)  0.62  0.64    1

)  0.01 -0.23 -0.17    1

. -0.01 -0.27 -0.20  0.76    1

; -0.05 -0.11 -0.09  0.60  0.62    1

0.01  0.06  0.07  0.17  0.09  0.08    1

0.04 -0.16 -0.09  0.38  0.36  0.24  0.11    1

I  0.01 -0.09 -0.07  0.07  0.02 -0.02  0.09  0.88    1

! -0.07 -0.11 -0.13  0.56  0.55  0.62  0.09  0.31  0.25    1

)  0.12  0.05  0.12  0.28  0.19  0.17  0.12  0.10 -0.03  0.06    1

I  0.11  0.08  0.13  0.16  0.20  0.15  0.09  0.06 -0.07  0.01  0.94    1

!  0.10  0.07  0.13  0.22  0.23  0.42  0.10  0.07 -0.08  0.16  0.90  0.92    1

I -0.03  0.01 -0.02 -0.04 -0.03  0.00 -0.40 -0.23 -0.23 -0.02 -0.09 -0.08 -0.07   1

. -0.06  0.10  0.02 -0.18 -0.17 -0.08 -0.25 -0.33 -0.28 -0.16 -0.10 -0.08 -0.06 0.68    1

I  0.08 -0.06  0.01 -0.02  0.00  0.00 -0.01  0.01 -0.06 -0.09  0.02  0.01  0.00 0.01 -0.02 1

'  0.00  0.05  0.03 -0.24 -0.22 -0.12 -0.25 -0.28 -0.24 -0.28 -0.09 -0.08 -0.07 0.48  0.66 0.50   1



More intriguing information

1. ROBUST CLASSIFICATION WITH CONTEXT-SENSITIVE FEATURES
2. The name is absent
3. The name is absent
4. The name is absent
5. Magnetic Resonance Imaging in patients with ICDs and Pacemakers
6. The Distribution of Income of Self-employed, Entrepreneurs and Professions as Revealed from Micro Income Tax Statistics in Germany
7. The name is absent
8. The name is absent
9. fMRI Investigation of Cortical and Subcortical Networks in the Learning of Abstract and Effector-Specific Representations of Motor Sequences
10. TLRP: academic challenges for moral purposes