Alternatively, we can apply Bayesian updating to μt, yielding
μt+ι (E) =
μt(E ∩ Et+i)
μt (Et+i)
Now we observe that, since E ∩ Et+i Ç Et+i Ç Et,
μt (Et+i)
μt(E ∩ Et+i)
μ (Et+i)
μ (Et)
μ (E ∩ Et+i)
μ (Et)
and hence,
μt+i (E)
μμ(e∩Et+i)ʌ , μμ‰η
∖ μ (Et) Γ∖ μ (Et)J
= μt+i (E) ■
6 Restricted Bayesianism
Given full rationality on a bounded domain, it is natural to consider μlt, the
restriction of the probability measure μt to events E (p) where p E Nг. That
is,
μt(E (p)) = μt(E (p))
if and only if p E Nt.
We now have two potential ways of deriving μlt+i, given the observation
of Et+i. We can use the restriction procedure at time t + 1 instead of t,
obtaining μt+i as the restriction of μt+i to Pt. Alternatively, we can apply
Bayesian updating directly to μt using the information obtained from Et+i.
The first approach yields, for any p E Pt,
μlt+i(E (p)) = μt+i(E (p))
= μ(E (p) ∩ e
μt (Et+i)
= μ (E (p) ∩ Et+i)
μ (Et+i)
where, as shown in the previous section, the last step works because E (p) ∩
Et+i Ç Et+i Ç Etso μ (Et+i) = μt (Et+i) μ (Et)
More intriguing information
1. The Values and Character Dispositions of 14-16 Year Olds in the Hodge Hill Constituency2. The name is absent
3. The name is absent
4. The name is absent
5. The Global Dimension to Fiscal Sustainability
6. The name is absent
7. Beyond Networks? A brief response to ‘Which networks matter in education governance?’
8. Implementation of the Ordinal Shapley Value for a three-agent economy
9. Segmentación en la era de la globalización: ¿Cómo encontrar un segmento nuevo de mercado?
10. A Brief Introduction to the Guidance Theory of Representation