The name is absent



Alternatively, we can apply Bayesian updating to μt, yielding

μt+ι (E) =


μt(EEt+i)
μ
t (Et+i)


Now we observe that, since EEt+i Ç Et+i Ç Et,

μt (Et+i)

μt(EEt+i)


μ (Et+i)

μ (Et)

μ (EEt+i)
μ (Et)


and hence,

μt+i (E)


μμ(eEt+i)ʌ , μμ‰η

∖   μ (Et)   Γ μ (Et)J

= μt+i (E)

6 Restricted Bayesianism

Given full rationality on a bounded domain, it is natural to consider μlt, the
restriction of the probability measure
μt to events E (p) where p E Nг. That
is,

μt(E (p)) = μt(E (p))

if and only if p E Nt.

We now have two potential ways of deriving μlt+i, given the observation
of
Et+i. We can use the restriction procedure at time t + 1 instead of t,
obtaining μt+i as the restriction of μt+i to Pt. Alternatively, we can apply
Bayesian updating directly to
μt using the information obtained from Et+i.
The first approach yields, for any p E Pt,

μlt+i(E (p)) = μt+i(E (p))

= μ(E (p)e

μt (Et+i)

= μ (E (p) Et+i)

μ (Et+i)

where, as shown in the previous section, the last step works because E (p)
E
t+i Ç Et+i Ç Etso μ (Et+i) = μt (Et+i) μ (Et)



More intriguing information

1. The Values and Character Dispositions of 14-16 Year Olds in the Hodge Hill Constituency
2. The name is absent
3. The name is absent
4. The name is absent
5. The Global Dimension to Fiscal Sustainability
6. The name is absent
7. Beyond Networks? A brief response to ‘Which networks matter in education governance?’
8. Implementation of the Ordinal Shapley Value for a three-agent economy
9. Segmentación en la era de la globalización: ¿Cómo encontrar un segmento nuevo de mercado?
10. A Brief Introduction to the Guidance Theory of Representation