0 ≤ -Cβ(y-x,y) + Dχ(x) + δ[Ca(A(f(x)),f(x))+Cy(A(f(x)),f(x))]fx(x)
≤ -Ca(0,x) + Dχ(x) + δ[Ca(f(x),f(x))+Cy(f(x),f(x))]fχ(x). (using Caa + Cay ≥ 0 twice)
Define H(x) ≡ -Ca(0,x) + Dx(x) + δ[Ca(f(x),f(x))+Cy(f(x),f(x))]fx(x) ≥ 0. The condition in 5b implies H(0)
< 0 and by the continuity of H one can pick an sufficiently close to 0 such that H(χ) < 0. This yields a
contradiction. ■
Proof of Proposition 7. a. Suppose not. Then, there exists y0 ≥ f(X) and an optimal path {yt} such that
y1< f(X), i.e., X0 < X. Using Lemma 4, we have Ca(y -x ,y ) ≤Dχ(x0) + δ[Ca(a1,f(χ)) + Cyffx).
Then x0 < x implies Ca(y0-x,y0) ≤ Ca(y -x ,y ) ≤ Dx(x0) + δ[Ca(abf(x0)) + C/afxJMfXx) ≤ Dx(x) +
δ[Ca(at+1,f(xt)) + Cy(at+1,f(xt))]fx(xt) which violates the condition in part a.
b. Suppose not. Then, there exists optimal path {yt} such that f(x0) = y1 < y0 = f(x), i.e., x0 < x. Lemma 4
implies Ca(y0 -x0,y0) = Ca(f(x)-x0,f(x)) ≤ Dx(x0) + δ[Ca(a1,f(xc)) + Cyffx). Since X(y) is
monotone under Caa + Cay ≥ 0 and x0 < x, then x1 ≤ x0. Using Caa + Cay ≥ 0 twice, this implies Ca(f(x0)-
x0,f(x0)) ≤ Ca(f(x)-x0,f(x)) ≤ Dx(x0) + δ[Ca(f(x0)-x1,f(x0)) + Cβ(f(x0)-x1,f(x0))]fx(x0) ≤ Dx(x0) +
δ[Ca(f(x0),f(x0)) + Ca(f(x0),f(x0))]fx(x0). This violates the condition in part b. ■
28
More intriguing information
1. Partner Selection Criteria in Strategic Alliances When to Ally with Weak Partners2. The name is absent
3. Assessing Economic Complexity with Input-Output Based Measures
4. Education Responses to Climate Change and Quality: Two Parts of the Same Agenda?
5. The name is absent
6. The name is absent
7. The Folklore of Sorting Algorithms
8. Opciones de política económica en el Perú 2011-2015
9. Trade and Empire, 1700-1870
10. Competition In or For the Field: Which is Better