The name is absent



0 -Cβ(y-x,y) + Dχ(x) + δ[Ca(A(f(x)),f(x))+Cy(A(f(x)),f(x))]fx(x)

-Ca(0,x) + Dχ(x) + δ[Ca(f(x),f(x))+Cy(f(x),f(x))]fχ(x).                 (using Caa + Cay 0 twice)

Define H(x) -Ca(0,x) + Dx(x) + δ[Ca(f(x),f(x))+Cy(f(x),f(x))]fx(x) 0. The condition in 5b implies H(0)
< 0 and by the continuity of H one can pick an sufficiently close to 0 such that H(χ) < 0. This yields a
contradiction.

Proof of Proposition 7. a. Suppose not. Then, there exists y0 f(X) and an optimal path {yt} such that
y1< f(X), i.e., X
0 < X. Using Lemma 4, we have Ca(y -x ,y ) Dχ(x0) + δ[Ca(a1,f(χ)) + Cyffx).
Then x
0 < x implies Ca(y0-x,y0) Ca(y -x ,y ) Dx(x0) + δ[Ca(abf(x0)) + C/afxJMfXx) Dx(x) +
δ[Ca(at+1,f(xt)) + Cy(at+1,f(xt))]fx(xt) which violates the condition in part a.

b. Suppose not. Then, there exists optimal path {yt} such that f(x0) = y1 < y0 = f(x), i.e., x0 < x. Lemma 4
implies Ca(y
0 -x0,y0) = Ca(f(x)-x0,f(x)) Dx(x0) + δ[Ca(a1,f(xc)) + Cyffx). Since X(y) is
monotone under Caa + Cay
0 and x0 < x, then x1 x0. Using Caa + Cay 0 twice, this implies Ca(f(x0)-
x
0,f(x0)) Ca(f(x)-x0,f(x)) Dx(x0) + δ[Ca(f(x0)-x1,f(x0)) + Cβ(f(x0)-x1,f(x0))]fx(x0) Dx(x0) +
δ[Ca(f(x0),f(x0)) + Ca(f(x0),f(x0))]fx(x0). This violates the condition in part b.

28



More intriguing information

1. Short Term Memory May Be the Depletion of the Readily Releasable Pool of Presynaptic Neurotransmitter Vesicles
2. ARE VOLATILITY EXPECTATIONS CHARACTERIZED BY REGIME SHIFTS? EVIDENCE FROM IMPLIED VOLATILITY INDICES
3. A Computational Model of Children's Semantic Memory
4. The name is absent
5. The name is absent
6. The name is absent
7. The name is absent
8. The InnoRegio-program: a new way to promote regional innovation networks - empirical results of the complementary research -
9. The name is absent
10. Endogenous Heterogeneity in Strategic Models: Symmetry-breaking via Strategic Substitutes and Nonconcavities