The name is absent



0 -Cβ(y-x,y) + Dχ(x) + δ[Ca(A(f(x)),f(x))+Cy(A(f(x)),f(x))]fx(x)

-Ca(0,x) + Dχ(x) + δ[Ca(f(x),f(x))+Cy(f(x),f(x))]fχ(x).                 (using Caa + Cay 0 twice)

Define H(x) -Ca(0,x) + Dx(x) + δ[Ca(f(x),f(x))+Cy(f(x),f(x))]fx(x) 0. The condition in 5b implies H(0)
< 0 and by the continuity of H one can pick an sufficiently close to 0 such that H(χ) < 0. This yields a
contradiction.

Proof of Proposition 7. a. Suppose not. Then, there exists y0 f(X) and an optimal path {yt} such that
y1< f(X), i.e., X
0 < X. Using Lemma 4, we have Ca(y -x ,y ) Dχ(x0) + δ[Ca(a1,f(χ)) + Cyffx).
Then x
0 < x implies Ca(y0-x,y0) Ca(y -x ,y ) Dx(x0) + δ[Ca(abf(x0)) + C/afxJMfXx) Dx(x) +
δ[Ca(at+1,f(xt)) + Cy(at+1,f(xt))]fx(xt) which violates the condition in part a.

b. Suppose not. Then, there exists optimal path {yt} such that f(x0) = y1 < y0 = f(x), i.e., x0 < x. Lemma 4
implies Ca(y
0 -x0,y0) = Ca(f(x)-x0,f(x)) Dx(x0) + δ[Ca(a1,f(xc)) + Cyffx). Since X(y) is
monotone under Caa + Cay
0 and x0 < x, then x1 x0. Using Caa + Cay 0 twice, this implies Ca(f(x0)-
x
0,f(x0)) Ca(f(x)-x0,f(x)) Dx(x0) + δ[Ca(f(x0)-x1,f(x0)) + Cβ(f(x0)-x1,f(x0))]fx(x0) Dx(x0) +
δ[Ca(f(x0),f(x0)) + Ca(f(x0),f(x0))]fx(x0). This violates the condition in part b.

28



More intriguing information

1. Insurance within the firm
2. Convergence in TFP among Italian Regions - Panel Unit Roots with Heterogeneity and Cross Sectional Dependence
3. The name is absent
4. IMPACTS OF EPA DAIRY WASTE REGULATIONS ON FARM PROFITABILITY
5. Luce Irigaray and divine matter
6. The growing importance of risk in financial regulation
7. Business Cycle Dynamics of a New Keynesian Overlapping Generations Model with Progressive Income Taxation
8. Declining Discount Rates: Evidence from the UK
9. DIVERSITY OF RURAL PLACES - TEXAS
10. Detecting Multiple Breaks in Financial Market Volatility Dynamics