Robust Econometrics



[47] Rousseeuw, P. J., and Leroy, A. M. (1984). Robust regression by means
of
S-estimators. In J. Franke, W. Hardle, and R. D. Martin (eds.) Robust
and Nonlinear Time Series Analysis
, Springer, 256-272.

[48] Sakata, S., and White, H. (1995). An alternative definition of finite-
sample breakdown point with application to regression model estima-
tors.
Journal of the American Statistical Association 90, 1099-1106.

[49] Sakata, S., and White, H. (1998). High breakdown point conditional dis-
persion estimation with application to S&P 500 daily returns volatility.
Econometrica 66, 529-567.

[50] Sakata, S., and White, H. (2001). S-estimation of nonlinear regres-
sion models with dependent and heterogeneous observations.
Journal
of Econometrics
103, 5-72.

[51] Sapra, S. K. (2003). High-breakdown point estimation of some regression
models.
Applied Economics Letters 10(14), 875-878.

[52] Simpson, D. G., Ruppert, D., and Carroll, R. J. (1992). On one-step
GM estimates and stability of inferences in linear regression.
Journal of
the American Statistical Association
87, 439-450.

[53] Stromberg, A. J., Hossjer, O., and Hawkins, D. M. (2000). The least
trimmed differences regression estimator and alternatives.
Journal of
the American Statistical Association
95, 853-864.

28



More intriguing information

1. European Integration: Some stylised facts
2. Fiscal Rules, Fiscal Institutions, and Fiscal Performance
3. A multistate demographic model for firms in the province of Gelderland
4. Midwest prospects and the new economy
5. The name is absent
6. Novelty and Reinforcement Learning in the Value System of Developmental Robots
7. The name is absent
8. Quality Enhancement for E-Learning Courses: The Role of Student Feedback
9. Ex post analysis of the regional impacts of major infrastructure: the Channel Tunnel 10 years on.
10. The name is absent