50
[Figure 11]
Table 1A
Urban Agglomerates and the EU Geographic Core
d |
Core |
Reg. |
Nr |
Tot. Pop. Change |
Y/P |
Y/P | |||
PROVINCES_____________ |
n regions________________ |
1997 |
1997 |
90-97 |
1990 |
1997 |
90-97 | ||
NORTH - WEST |
1Merryside |
931 |
C1 |
2166.3 |
9^ |
-24.6 |
77 |
74.6 |
-2.4 |
2Greater Manchester |
855 |
C1__ |
2004.9 |
10 |
-12.9 |
___92 |
93.2 |
____1.2 | |
YORKSHIRE- |
3West Yorkshire |
898 |
C3:1 |
1038.9 |
6 |
43.4 |
95 |
93.8 |
-1.2 |
HUMBERSIDE___________ |
4South Yorkshire |
847 |
C4:1 |
838.1 |
___4_ |
10.9 |
____80 |
75.4 |
-4.6 |
____________________________________5Derbyshire, Nottinghamshire_______ |
783 |
A1:2 |
417.5 |
13 |
49.2 |
___92 |
93.1 |
____1.1 | |
6Shropshire, Staffordshire |
828 |
A1:2 |
239.1 |
11 |
37.2 |
86 |
89.0 |
3.0 | |
WEST - MIDLANDS |
7West Midlands |
774 |
C1 |
2938.8 |
6 |
26.1 |
97 |
94.4 |
-2.6 |
_____8Hereford-Worcs., Warwick________ |
726 |
A1:2 |
203.9 |
___9_ |
44.4 |
___89 |
101.0 |
12.0 | |
9Leich., Northamptonshire |
735 |
A1:2 |
312.8 |
11 |
60.3 |
107 |
105.5 |
-1.5 | |
WALES |
10Gwent, Mid-S-W-Glamoran |
819 |
C4:2 |
16 |
82 |
73.9 |
-8.1 | ||
SOUTH-EAST-WEST (UK) |
11Avon, Glouch, Wilshire |
760 |
C4:1 |
282.3 |
11 |
101.4 |
108 |
114.8 |
6.8 |
12Berks, Bucks, Oxfords |
639 |
C4:1 |
362.2 |
12 |
95.6 |
113 |
126.3 |
13.3 | |
13Bed-, Herefordshire |
658 |
C4:1 |
547.4 |
13 |
49.7 |
105 |
104.5 |
-0.5 | |
14Greater London |
570 |
C |
4489.7 |
1 |
316.3 |
154 |
145.7 |
-8.3 | |
15Surrey, East-West Sussex__________ |
626 |
C4:1 |
464.5 |
18 |
116.4 |
101 |
106.7 |
____5.7 | |
_________________________________16Kent___________________________ |
472 |
A1:1 |
418.8 |
18 |
38.2 |
___92 |
93.7 |
____1.7 | |
Netherland |
17Noord-Holland |
238 |
C3:5 |
932.8 |
22 |
104.4 |
118 |
127.6 |
9.6 |
18Zuid-Holland |
230 |
C2:1 |
1169.1 |
33 |
131.8 |
109 |
116.7 |
7.7 | |
19Utrecht |
179 |
C |
794.9 |
12 |
67.8 |
95 |
125.6 |
30.6 | |
20Gelderland_______________________ |
123 |
C4:1 |
379.1 |
27 |
87.3 |
____87 |
100.5 |
13.5 | |
________________________________21Noord Brabant__________________ |
111 |
A1:4 |
468.7 |
26 |
122.9 |
___95 |
114.6 |
19.6 | |
BELGIUM |
22An twerp en |
212 |
C4:2 |
570.8 |
16 |
39.7 |
166 |
169.1 |
3.1 |
23Brussels |
252 |
C |
5897.7 |
1 |
-12.1 |
126 |
138.5 |
12.5 | |
24Oost Vlaanderen |
283 |
C4:3 |
454.8 |
17 |
24.3 |
100 |
104.1 |
4.1 | |
25West Vlaanderen |
274 |
C4:1 |
358.7 |
14 |
21.3 |
107 |
116.2 |
9.2 | |
26Hainaut__________________________ |
169 |
C4:2 |
339.1 |
17 |
5.7 |
____78 |
79.0 |
____1.0 | |
27Champagne-Ardenne |
287 |
A2:2 |
52.8 |
___8_ |
4.0 |
112 |
90.1 |
-21.9 | |
FRANCE_______________ |
28Ile de France_______________________ |
487 |
C__ |
921.8 |
37 |
421.8 |
166 |
152.6 |
-13.4 |
____________________________29Namur______________________ |
137 |
A1:1 |
119.5 |
____3_ |
17.1 |
____83 |
86.0 |
___3.0 | |
Belgium / Netherland |
30Liege |
121 |
C4:1 |
263.0 |
10 |
17.8 |
96 |
98.6 |
2.6 |
31Limburg (NL)___________________ |
110 |
C4:1 |
524.4 |
13 |
33.1 |
___94 |
103.1 |
___9.1 | |
Nordrhein- |
32Düsseldorf |
0 |
C2:5 |
996.2 |
42 |
101.2 |
124 |
115.5 |
-8.5 |
WESTFALEN |
33Koln |
40 |
C2:2 |
568.8 |
53 |
226.1 |
114 |
115.3 |
1.3 |
34Munster |
136 |
C2:1 |
376.6 |
29 |
162.2 |
96 |
96.5 |
0.5 | |
35Detmold |
150 |
C3:1 |
313.2 |
21 |
191.5 |
107 |
102.1 |
-4.9 | |
36Arnsburg_______________________ |
45 |
C2:3 |
476.8 |
40 |
130.5 |
105 |
99.8 |
-5.2 | |
Rheinland-Pfalz |
37Koblenz |
153 |
C3:1 |
187.3 |
6 |
134.9 |
95 |
89.7 |
-5.3 |
38Trier |
278 |
C4:1 |
103.7 |
1 |
32.5 |
89 |
93.2 |
4.2 | |
39Rheinessen-Pflaz__________________ |
287 |
C2:1 |
292.2 |
12 |
155.1 |
114 |
100.9 |
-13.1 | |
SAARLAND |
40Saarland_________________________ |
348 |
C4:2 |
418.0 |
13 |
9.3 |
109 |
98.3 |
-10.7 |
HESSEN |
4 IDarmstadt |
217 |
C2:2 |
497.4 |
31 |
212.1 |
158 |
164.7 |
6.7 |
42Kassel___________________________ |
225 |
C3:1 |
153.4 |
___7_ |
83.5 |
104 |
105.9 |
____1.9 | |
baden - Wurtemburg |
43Stuttgart |
392 |
C2:1 |
369.4 |
33 |
290.1 |
137 |
130.5 |
-6.5 |
44Karlsruhe |
284 |
C2:1 |
385.3 |
20 |
181.9 |
123 |
134.1 |
11.1 | |
45Freiburg |
477 |
C3:1 |
226.0 |
17 |
179.9 |
109 |
106.2 |
-2.8 | |
46Tubingen |
517 |
C4:1 |
195.9 |
13 |
157 |
112 |
110.1 |
-1.9 | |
Niedersachsen |
47Braunschweig |
246 |
C3:1 |
206.2 |
16 |
55.7 |
111 |
97.6 |
-13.4 |
48Hanover |
250 |
C2:1 |
237.5 |
23 |
116.3 |
115 |
111.4 |
-3.6 | |
49Weser-Ems |
404 |
C3:3 |
160.5 |
23 |
231.9 |
____93 |
102.2 |
___9.2 | |
bayern |
50Unterfranken |
363 |
C3:3 |
1559.0 |
4 |
94.7 |
98 |
102.1 |
4.1 |
51Schwaben |
555 |
C3:1 |
173.8 |
8 |
142.6 |
110 |
105.4 |
-4.6 | |
52Mittlefranken |
452 |
C2:1 |
231.7 |
8 |
112.7 |
125 |
121.3 |
-3.7 | |
53Oberfranken |
417 |
C3:2 |
154.1 |
7 |
58.1 |
103 |
106.4 |
3.4 | |
54Oberplaz |
542 |
C3:1 |
110.3 |
6 |
78.1 |
94 |
96.8 |
2.8 | |
55Niederbayern |
596 |
C4:3 |
112.6 |
4 |
106.1 |
95 |
101.4 |
6.4 | |
56Oberbayern_____________________ |
620 |
C2:1 |
228.0 |
14 |
275.7 |
146 |
164.7 |
18.7 | |
57Salzburg |
759 |
A1:1 |
71.5 |
1 |
29.6 |
118 |
122.6 |
4.6 | |
58Tirol |
757 |
A1:1 |
52.3 |
1 |
30.5 |
107 |
106.7 |
-0.3 | |
59Kamten |
847 |
A1:1 |
59.1 |
2 |
15.4 |
85 |
89.0 |
4.0 | |
60Trentino-Alto Adage______________ |
927 |
A2:2 |
67.7 |
___3_ |
34.2 |
135 |
131.1 |
-3.9 | |
NORTHERN - ITALY |
61Friuli-Venezia Giulia |
1193 |
C3:1 |
151.1 |
5 |
-17.8 |
122 |
125.1 |
3.1 |
62Venetio |
989 |
A1:6 |
242.9 |
26 |
75.8 |
117 |
123.0 |
6.0 | |
63Lombardia |
876 |
C3:1 |
375.9 |
52 |
61.5 |
135 |
131.1 |
-3.9 | |
64Piemonte |
936 |
A1:5 |
169.0 |
30 |
-65.6 |
121 |
116.7 |
-4.3 |
More intriguing information
1. AN EMPIRICAL INVESTIGATION OF THE PRODUCTION EFFECTS OF ADOPTING GM SEED TECHNOLOGY: THE CASE OF FARMERS IN ARGENTINA2. Evolutionary Clustering in Indonesian Ethnic Textile Motifs
3. Determinants of U.S. Textile and Apparel Import Trade
4. The name is absent
5. Weak and strong sustainability indicators, and regional environmental resources
6. The name is absent
7. Integrating the Structural Auction Approach and Traditional Measures of Market Power
8. The name is absent
9. The name is absent
10. Update to a program for saving a model fit as a dataset