Update to a program for saving a model fit as a dataset



Stata Technical Bulletin

27


We can compare this to the logistic regression analysis using only the complete observations:

. keep if x”=.

. logit y x, or

Logit estimates

Log likelihood = -299.1S92S

Number of obs =

LR chi2(l)

Prob > chi2     =

Pseudo R2       =

500

92.97

0.0000
0.1345

I odd-ratio Std. Err.

z

P>z

[957, Conf.

Interval]

---------+-------------------------

x I 2.771684   .3326964

8.493

0.000

2.190638

3.506847

Note that the mean score estimate above had smaller standard error, reflecting the additional information used in the analysis.
Also, since
i is a surrogate for .r, it is not used in the complete case analysis.

Next, we consider a real example of an application of the mean score method to a case-control study of the association
between ectopic pregnancy and sexually transmitted diseases; see Reilly and Pepe (1995) for a full description of the data

. use ectopic

. meanscor y gonn-chlam,first(gonn-sexptn) second(chlam)
meanscore estimates

I

odd-ratio

Std. Err.

z

P>z

[957. Conf.

Interval]

cons

I

.4543184

.0987123

-3.631

0.000

.2967666

.6955137

gonn

I

.9495978

.2856096

-0.172

0.863

.5266531

1.712201

contr

I

.0943838

.0176643

-12.612

0.000

.0654021

.1362082

sexptn

I

2.099286

.4938943

3.152

0.002

1.323766

3.329139

chlam

I

2.471606

.7808384

2.864

0.004

1.330653

4.590858

For comparison, an analysis of complete cases only gives

. keep if chlam ~=.

. logit y gonn-chlam, or

Logit estimates

Log likelihood = -169.54627

Number of obs =
LR chi2(4)

Prob > chi2     =

Pseudo R2       =

327
104.24
0.0000
0.2351

I

odd-ratio Std. Err.

z

P>z

[957. Conf.

Interval]

— — —--— —--+—

gonn I

.7445515   .3132037

-0.701

0.483

.3264582

1.698095

contr I

.1098308   .0303352

-7.997

0.000

.063918

.1887231

sexptn I

1.93898   .7101447

1.808

0.071

.945853

3.97487

chlam I

2.47682   .7576623

2.965

0.003

1.359912

4.511054

References

Reilly, M. 1996. Optimal sampling strategies for two-stage studies. American Journal of Epidemiology 143: 92-100.

Reilly, M. and M. S. Pepe. 1995. A mean score method for missing and auxiliary covariate data in regression models. Biometrika 82: 299-314.

sg157 Predicted values calculated from linear or logistic regression models

Joanne M. Garrett, University of North Carolina, [email protected]

Abstract: The program predcalc for easily calculating predicted values and confidence intervals from linear or logistic regression
model estimates for specified values of the
X variables is introduced and illustrated.

Keywords: regression models, predicted values.

Syntax

predcalc yvar, 7yt⅛x(xvarli.st) [ level (#) model linear ]



More intriguing information

1. The name is absent
2. Retirement and the Poverty of the Elderly in Portugal
3. Dynamic Explanations of Industry Structure and Performance
4. The name is absent
5. IMMIGRATION AND AGRICULTURAL LABOR POLICIES
6. The name is absent
7. ADJUSTMENT TO GLOBALISATION: A STUDY OF THE FOOTWEAR INDUSTRY IN EUROPE
8. Chebyshev polynomial approximation to approximate partial differential equations
9. A THEORETICAL FRAMEWORK FOR EVALUATING SOCIAL WELFARE EFFECTS OF NEW AGRICULTURAL TECHNOLOGY
10. The name is absent