Stata Technical Bulletin
29
. regress job fem phd ment fel art cit
Source I |
SS |
df |
MS |
Number of obs = 408 T? / Л ЛЛП — *7 70 | ||
— |
1 ∖ Vt *±V ɪ √ |
— -L I . I Q | ||||
Model I |
81.0584763 |
6 13. |
5097461 |
Prob > F |
= 0.0000 | |
Residual ∣ |
304.737915 |
401 .759944926 |
R-Squared |
= 0.2101 | ||
Adj R-Squared |
= 0.1983 | |||||
— | ||||||
Total I |
385.796392 |
407 .947902683 |
Root MSE |
= .87175 | ||
— job I |
Coef. |
Std. Err. |
t |
p>∣t∣ |
[957. Conf. |
— Interval] |
---------+- |
— | |||||
fem I |
-.1391939 |
.0902344 |
-1.543 |
0.124 |
-.3165856 |
.0381977 |
phd I |
.2726826 |
.0493183 |
5.529 |
0.000 |
.1757278 |
.3696375 |
ment I |
.0011867 |
.0007012 |
1.692 |
0.091 |
-.0001917 |
.0025651 |
fel I |
.2341384 |
.0948206 |
2.469 |
0.014 |
.0477308 |
.4205461 |
art I |
.0228011 |
.0288843 |
0.789 |
0.430 |
-.0339824 |
.0795846 |
cit I |
.0044788 |
.0019687 |
2.275 |
0.023 |
.0006087 |
.008349 |
_cons I |
1.067184 |
.1661357 |
6.424 |
0.000 |
.7405785 |
1.39379 |
Iistcoef provides additional information:
. Iistcoef, help std constant
regress (N=408): Unstandardized and Standardized Estimates
Observed SD: .97360294
SD of Error: .8717482
job I |
b |
t |
p>∣t∣ |
bStdX |
bStdY |
bStdXY |
SDofX |
— | |||||||
fem I |
-0.13919 |
-1.543 |
0.124 |
-0.0680 |
-0.1430 |
-0.0698 |
0.4883 |
phd I |
0.27268 |
5.529 |
0.000 |
0.2601 |
0.2801 |
0.2671 |
0.9538 |
ment I |
0.00119 |
1.692 |
0.091 |
0.0778 |
0.0012 |
0.0799 |
65.5299 |
fel I |
0.23414 |
2.469 |
0.014 |
0.1139 |
0.2405 |
0.1170 |
0.4866 |
art I |
0.02280 |
0.789 |
0.430 |
0.0514 |
0.0234 |
0.0528 |
2.2561 |
cit I |
0.00448 |
2.275 |
0.023 |
0.1481 |
0.0046 |
0.1521 |
33.0599 |
„cons I |
1.06718 |
6.424 |
0.000 | ||||
— b = |
raw coefficient |
— | |||||
t = |
t-score for |
test of |
b=0 | ||||
p>∣t∣ = |
p-value for |
t-test |
bStdX = х-standardized coefficient
bStdY = у-standardized coefficient
bStdXY = fully standardized coefficient
SDofX = standard deviation of X
Example with logit
The logit model illustrates that Iistcoef can be used to obtain alternative transformations of the basic parameters. We
begin by estimating the logit model, which produces the standard output:
. logit Ifp k5 k618 age we he Iwg inct nolog Logit estimates Log likelihood = -452.63296 |
Number of obs = Prob > chi2 = Pseudo R2 = |
753 | ||||
— Ifp I |
Coef. |
Std. Err. |
z |
P>∣z∣ |
[957. Conf. |
— Interval] |
— | ||||||
кБ I |
-1.462913 |
. 1970006 |
-7.426 |
0.000 |
-1.849027 |
-1.076799 |
k618 I |
-.0645707 |
.0680008 |
-0.950 |
0.342 |
-.1978499 |
.0687085 |
age I |
-.0628706 |
.0127831 |
-4.918 |
0.000 |
-.0879249 |
-.0378162 |
wc I |
.8072738 |
.2299799 |
3.510 |
0.000 |
.3565215 |
1.258026 |
he I |
.1117336 |
.2060397 |
0.542 |
0.588 |
-.2920969 |
.515564 |
Iwg I |
.6046931 |
.1508176 |
4.009 |
0.000 |
.3090961 |
.9002901 |
inc I |
-.0344464 |
.0082084 |
-4.196 |
0.000 |
-.0505346 |
-.0183583 |
_cons I |
3.18214 |
.6443751 |
4.938 |
0.000 |
1.919188 |
4.445092 |
Most frequently, the logit model is interpreted using factor change coefficients, also known as odds ratios. These are the default
option for Iistcoef.
. Iistcoef, help
More intriguing information
1. A simple enquiry on heterogeneous lending rates and lending behaviour2. TRADE NEGOTIATIONS AND THE FUTURE OF AMERICAN AGRICULTURE
3. The name is absent
4. Critical Race Theory and Education: Racism and antiracism in educational theory and praxis David Gillborn*
5. Death as a Fateful Moment? The Reflexive Individual and Scottish Funeral Practices
6. Examining the Regional Aspect of Foreign Direct Investment to Developing Countries
7. Secondary stress in Brazilian Portuguese: the interplay between production and perception studies
8. Indirect Effects of Pesticide Regulation and the Food Quality Protection Act
9. The name is absent
10. Keynesian Dynamics and the Wage-Price Spiral:Estimating a Baseline Disequilibrium Approach