The name is absent



Stata Technical Bulletin

43


. use http ://fmwww.be.edu∕ec-p∕data∕Mills2d∕fta.dta

. tsset
time variable: month, 1965ml to 1995ml2

. gphudak ftaret,power(0.5 0.6 0.7)

GPH estimate of fractional differencing parameter

Power

Ords

Est d

StdErr

t(H0: d=0)

p>∣t∣

Asy.

StdErr

z(HO: d=0)

P>∣z∣

.εo

20

-.00204

.160313

-0.0127

0.990

. 187454

-0.0109

0.991

.60

35

.228244

.145891

1.5645

0.128

. 130206

1.7529

0.080

.70

64

.141861

.089922

1.5776

0.120

.091267

1.5544

0.120

. modlpr ftaret, power(0.5 0.55:0.8)

Modified LPR estimate of fractional differencing parameter

Power

Ords

Est d

Std Err

t(H0: d=0)

p>∣t∣

z(HO: d=l)

P>∣z∣

.50

19

.0231191

.139872

0.1653

0.870

-6.6401

0.000

.55

25

.2519889

.1629533

1.5464

0.135

-5.8322

0.000

.60

34

.2450011

.1359888

1.8016

0.080

-6.8650

0.000

.65

46

.1024504

.1071614

0.9560

0.344

-9.4928

0.000

.70

63

.1601207

.0854082

1.8748

0.065

-10.3954

0.000

.75

84

.1749659

.08113

2.1566

0.034

-11.7915

0.000

.80

113

.0969439

.0676039

1.4340

0.154

-14.9696

0.000

. roblpr ftaret

Robinson estimates of fractional differencing parameter

Power Ords Est d StdErr t(HO: d=0)    P>∣t∣

.90    205   .1253645   .0446745     2.8062     0.005

. roblpr ftap ftadiv

Robinson estimates of fractional differencing parameters

Power =

.90

Ords

=

205

Variable

I      Est d

Std Err      t


p>∣t∣

ftap

I .8698092

.0163302 53.2640

0.000

ftadiv

I .8717427

.0163302 53.3824

0.000

Test for equality of d coefficients: F(l,406) = .00701 Prob > F = 0.9333
. constraint define 1 ftap=ftadiv
. roblpr ftap ftadiv ftaret, c(l)

Robinson estimates of fractional differencing parameters

Power =

.90

Ords

=

205

Variable

I      Est d

Std Err      t


p>∣t∣

ftap

I .8707759

.0205143 42.4473

0.000

ftadiv

I .8707759

.0205143 42.4473

0.000

ftaret

I .1253645

.0290116   4.3212

0.000

Test for equality of d coefficients: F(l,610) = 440.11 Prob > F = 0.0000

The GPH test, applied to the stock returns series, generates estimates of the long memory parameter that cannot reject the
null at the ten percent level using the t test. Phillips’ modified
LPR, applied to this series, finds that d = 1 can be rejected for
all powers tested, while
d = 0 (stationarity) may be rejected at the ten percent level for powers 0.6, 0.7, and 0.75. Robinson’s
estimate for the returns series alone is quite precise. Robinson’s multivariate test, applied to the price and dividends series,
finds that each series has
d > 0. The test that they share the same d cannot be rejected. Accordingly, the test is applied to all
three series subject to the constraint that price and dividends series have a common
d, yielding a more precise estimate of the
difference in
d parameters between those series and the stock returns series.



More intriguing information

1. The Context of Sense and Sensibility
2. The name is absent
3. The name is absent
4. The name is absent
5. RETAIL SALES: DO THEY MEAN REDUCED EXPENDITURES? GERMAN GROCERY EVIDENCE
6. The Folklore of Sorting Algorithms
7. The name is absent
8. Labour Market Flexibility and Regional Unemployment Rate Dynamics: Spain (1980-1995)
9. Natural Resources: Curse or Blessing?
10. Ability grouping in the secondary school: attitudes of teachers of practically based subjects
11. Yield curve analysis
12. Spatial Aggregation and Weather Risk Management
13. Meat Slaughter and Processing Plants’ Traceability Levels Evidence From Iowa
14. Evolutionary Clustering in Indonesian Ethnic Textile Motifs
15. The name is absent
16. Social Cohesion as a Real-life Phenomenon: Exploring the Validity of the Universalist and Particularist Perspectives
17. Ongoing Emergence: A Core Concept in Epigenetic Robotics
18. Ultrametric Distance in Syntax
19. AGRICULTURAL PRODUCERS' WILLINGNESS TO PAY FOR REAL-TIME MESOSCALE WEATHER INFORMATION
20. Skills, Partnerships and Tenancy in Sri Lankan Rice Farms