The name is absent



Stata Technical Bulletin

43


. use http ://fmwww.be.edu∕ec-p∕data∕Mills2d∕fta.dta

. tsset
time variable: month, 1965ml to 1995ml2

. gphudak ftaret,power(0.5 0.6 0.7)

GPH estimate of fractional differencing parameter

Power

Ords

Est d

StdErr

t(H0: d=0)

p>∣t∣

Asy.

StdErr

z(HO: d=0)

P>∣z∣

.εo

20

-.00204

.160313

-0.0127

0.990

. 187454

-0.0109

0.991

.60

35

.228244

.145891

1.5645

0.128

. 130206

1.7529

0.080

.70

64

.141861

.089922

1.5776

0.120

.091267

1.5544

0.120

. modlpr ftaret, power(0.5 0.55:0.8)

Modified LPR estimate of fractional differencing parameter

Power

Ords

Est d

Std Err

t(H0: d=0)

p>∣t∣

z(HO: d=l)

P>∣z∣

.50

19

.0231191

.139872

0.1653

0.870

-6.6401

0.000

.55

25

.2519889

.1629533

1.5464

0.135

-5.8322

0.000

.60

34

.2450011

.1359888

1.8016

0.080

-6.8650

0.000

.65

46

.1024504

.1071614

0.9560

0.344

-9.4928

0.000

.70

63

.1601207

.0854082

1.8748

0.065

-10.3954

0.000

.75

84

.1749659

.08113

2.1566

0.034

-11.7915

0.000

.80

113

.0969439

.0676039

1.4340

0.154

-14.9696

0.000

. roblpr ftaret

Robinson estimates of fractional differencing parameter

Power Ords Est d StdErr t(HO: d=0)    P>∣t∣

.90    205   .1253645   .0446745     2.8062     0.005

. roblpr ftap ftadiv

Robinson estimates of fractional differencing parameters

Power =

.90

Ords

=

205

Variable

I      Est d

Std Err      t


p>∣t∣

ftap

I .8698092

.0163302 53.2640

0.000

ftadiv

I .8717427

.0163302 53.3824

0.000

Test for equality of d coefficients: F(l,406) = .00701 Prob > F = 0.9333
. constraint define 1 ftap=ftadiv
. roblpr ftap ftadiv ftaret, c(l)

Robinson estimates of fractional differencing parameters

Power =

.90

Ords

=

205

Variable

I      Est d

Std Err      t


p>∣t∣

ftap

I .8707759

.0205143 42.4473

0.000

ftadiv

I .8707759

.0205143 42.4473

0.000

ftaret

I .1253645

.0290116   4.3212

0.000

Test for equality of d coefficients: F(l,610) = 440.11 Prob > F = 0.0000

The GPH test, applied to the stock returns series, generates estimates of the long memory parameter that cannot reject the
null at the ten percent level using the t test. Phillips’ modified
LPR, applied to this series, finds that d = 1 can be rejected for
all powers tested, while
d = 0 (stationarity) may be rejected at the ten percent level for powers 0.6, 0.7, and 0.75. Robinson’s
estimate for the returns series alone is quite precise. Robinson’s multivariate test, applied to the price and dividends series,
finds that each series has
d > 0. The test that they share the same d cannot be rejected. Accordingly, the test is applied to all
three series subject to the constraint that price and dividends series have a common
d, yielding a more precise estimate of the
difference in
d parameters between those series and the stock returns series.



More intriguing information

1. The name is absent
2. Subduing High Inflation in Romania. How to Better Monetary and Exchange Rate Mechanisms?
3. THE AUTONOMOUS SYSTEMS LABORATORY
4. The name is absent
5. The name is absent
6. Perfect Regular Equilibrium
7. The name is absent
8. The Importance of Global Shocks for National Policymakers: Rising Challenges for Central Banks
9. CURRENT CHALLENGES FOR AGRICULTURAL POLICY
10. Income Mobility of Owners of Small Businesses when Boundaries between Occupations are Vague