The name is absent



Stata Technical Bulletin

43


. use http ://fmwww.be.edu∕ec-p∕data∕Mills2d∕fta.dta

. tsset
time variable: month, 1965ml to 1995ml2

. gphudak ftaret,power(0.5 0.6 0.7)

GPH estimate of fractional differencing parameter

Power

Ords

Est d

StdErr

t(H0: d=0)

p>∣t∣

Asy.

StdErr

z(HO: d=0)

P>∣z∣

.εo

20

-.00204

.160313

-0.0127

0.990

. 187454

-0.0109

0.991

.60

35

.228244

.145891

1.5645

0.128

. 130206

1.7529

0.080

.70

64

.141861

.089922

1.5776

0.120

.091267

1.5544

0.120

. modlpr ftaret, power(0.5 0.55:0.8)

Modified LPR estimate of fractional differencing parameter

Power

Ords

Est d

Std Err

t(H0: d=0)

p>∣t∣

z(HO: d=l)

P>∣z∣

.50

19

.0231191

.139872

0.1653

0.870

-6.6401

0.000

.55

25

.2519889

.1629533

1.5464

0.135

-5.8322

0.000

.60

34

.2450011

.1359888

1.8016

0.080

-6.8650

0.000

.65

46

.1024504

.1071614

0.9560

0.344

-9.4928

0.000

.70

63

.1601207

.0854082

1.8748

0.065

-10.3954

0.000

.75

84

.1749659

.08113

2.1566

0.034

-11.7915

0.000

.80

113

.0969439

.0676039

1.4340

0.154

-14.9696

0.000

. roblpr ftaret

Robinson estimates of fractional differencing parameter

Power Ords Est d StdErr t(HO: d=0)    P>∣t∣

.90    205   .1253645   .0446745     2.8062     0.005

. roblpr ftap ftadiv

Robinson estimates of fractional differencing parameters

Power =

.90

Ords

=

205

Variable

I      Est d

Std Err      t


p>∣t∣

ftap

I .8698092

.0163302 53.2640

0.000

ftadiv

I .8717427

.0163302 53.3824

0.000

Test for equality of d coefficients: F(l,406) = .00701 Prob > F = 0.9333
. constraint define 1 ftap=ftadiv
. roblpr ftap ftadiv ftaret, c(l)

Robinson estimates of fractional differencing parameters

Power =

.90

Ords

=

205

Variable

I      Est d

Std Err      t


p>∣t∣

ftap

I .8707759

.0205143 42.4473

0.000

ftadiv

I .8707759

.0205143 42.4473

0.000

ftaret

I .1253645

.0290116   4.3212

0.000

Test for equality of d coefficients: F(l,610) = 440.11 Prob > F = 0.0000

The GPH test, applied to the stock returns series, generates estimates of the long memory parameter that cannot reject the
null at the ten percent level using the t test. Phillips’ modified
LPR, applied to this series, finds that d = 1 can be rejected for
all powers tested, while
d = 0 (stationarity) may be rejected at the ten percent level for powers 0.6, 0.7, and 0.75. Robinson’s
estimate for the returns series alone is quite precise. Robinson’s multivariate test, applied to the price and dividends series,
finds that each series has
d > 0. The test that they share the same d cannot be rejected. Accordingly, the test is applied to all
three series subject to the constraint that price and dividends series have a common
d, yielding a more precise estimate of the
difference in
d parameters between those series and the stock returns series.



More intriguing information

1. Making International Human Rights Protection More Effective: A Rational-Choice Approach to the Effectiveness of Ius Standi Provisions
2. PRIORITIES IN THE CHANGING WORLD OF AGRICULTURE
3. THE RISE OF RURAL-TO-RURAL LABOR MARKETS IN CHINA
4. 09-01 "Resources, Rules and International Political Economy: The Politics of Development in the WTO"
5. The Shepherd Sinfonia
6. Yield curve analysis
7. The name is absent
8. From Aurora Borealis to Carpathians. Searching the Road to Regional and Rural Development
9. Staying on the Dole
10. The name is absent