Table 5b : Social Class, Gender and Cohort as predictors of ‘heavy drinking’
(14+ units per week for women and 21+ units per week for men)
Variables in the |
Estimate |
S.E. |
Wald |
df___ |
Sig. |
Exp(B) | |
Gender______________ |
Men______________ |
ref cat |
ref cat | ||||
Women__________ |
-1.389 |
0.060 |
528.59 |
1 |
0.000 |
0.249 | |
Social Class___________ |
26.42 |
____6_ |
0.000 | ||||
Professional (1)_______ |
ref cat |
ref cat | |||||
Intermediate (2)_______ |
0.000 |
0.116 |
0.00 |
1 |
0.997 |
1.000 | |
Skilled Non-Manual -(3.1)____________________ |
-0.178 |
0.127 |
1.97 |
____1_ |
0.160 |
0.837 | |
Skilled Manual (3.2) |
0.089 |
0.117 |
0.58 |
____1_ |
0.448 |
1.093 | |
Semi Skilled (4) |
-0.063 |
0.127 |
0.24 |
____1_ |
0.621 |
0.939 | |
Unskilled (5)___________ |
0.153 |
0.164 |
0.88 |
____1_ |
0.348 |
1.166 | |
No valid Social Class |
-0.442 |
0.153 |
8.32 |
____1_ |
0.004 |
0.643 | |
Cohort________________ |
1958_______________ |
ref cat |
ref cat | ||||
1970_______________ |
-0.154 |
0.153 |
1.01 |
1 |
0.316 |
0.858 | |
Cohort by Gender_____ |
1970 and Female |
0.416 |
0.085 |
23.78 |
____1_ |
0.000 |
1.516 |
Cohort by Social Class |
2.48 |
____6_ |
0.871 | ||||
1970 & Intermediate (2)_________________________ |
0.136 |
0.166 |
0.67 |
____1_ |
0.412 |
1.146 | |
1970 & Skilled Non- Manual (3.1)__________ |
0.127 |
0.183 |
0.48 |
____1_ |
0.488 |
1.135 | |
1970 & Skilled Manual (3.2)__________ |
0.051 |
0.171 |
0.09 |
____1_ |
0.767 |
1.052 | |
1970 & Semi Skilled |
0.123 |
0.191 |
0.42 |
____1_ |
0.517 |
1.131 | |
1970 & Unskilled (5) |
0.146 |
0.266 |
0.30 |
____1_ |
0.585 |
1.157 | |
1970 & No valid Social Class__________ |
0.263 |
0.204 |
1.66 |
____1_ |
0.197 |
1.301 | |
Constant____________ |
-0.945 |
0.106 |
79.45 |
________1 |
0.000 |
0.389 |
17
More intriguing information
1. Improving the Impact of Market Reform on Agricultural Productivity in Africa: How Institutional Design Makes a Difference2. he Effect of Phosphorylation on the Electron Capture Dissociation of Peptide Ions
3. Climate change, mitigation and adaptation: the case of the Murray–Darling Basin in Australia
4. PERFORMANCE PREMISES FOR HUMAN RESOURCES FROM PUBLIC HEALTH ORGANIZATIONS IN ROMANIA
5. Wettbewerbs- und Industriepolitik - EU-Integration als Dritter Weg?
6. The name is absent
7. Naïve Bayes vs. Decision Trees vs. Neural Networks in the Classification of Training Web Pages
8. The name is absent
9. Ultrametric Distance in Syntax
10. EU Preferential Partners in Search of New Policy Strategies for Agriculture: The Case of Citrus Sector in Trinidad and Tobago