Appendix A. Derivation of the cost function for manufacturing
The production function for the manufacturing firm is given by:
(1)
Z is a sub-production function over the producer service sector’s composite output of
and is of the CES-type:
(2)
(ZX 1- -
Z = ∑ Xi11
к i=1
n 2 .
÷Σ x1
i=1
1-
i21
)
n1 n 2
The Lagrangean associated with the problem of minimizing ∑ pi 1 χi11 ÷ ∑ pi 2tχi 21
i =1 i =1
subject to the constraint that the production level is constant at Z is:
(3)
nɪ n 2
f = Σ pi 1 χi11 ÷ Σ pi2tχi21 ÷ λ
i =1 i =1
(
( JX 1-1 JX
Z- ∑χaσ ÷Σ
σ
i21
к i =1 i =1
к
The 1st order conditions are:
(4)
ɪ
^xi11
= p< 1 - λ
( V- 1 -
Σ xi 11σ
к i=1
JX ■ - Aσ -11 ( 1A - -
÷Σ x 21σ I1 —I χi1σ
i=1 ) к σ )
= 0, V jj....n1
( n1
(5)
δχi21
pi2 t
Σ χ.
1-
i11
кi=1
÷Σ
i =1
1-
1 Aσ-1
i21
-1
χ σ
χi 21
= 0 V ij....n2
σ
a/ ( ʌ 1-ɪ n 2 1-т Aσ-1
(6) ɪ = Z -Σχmσ ÷Σχmσ = 0
cλ к i=1 i=1 )
Dividing (4) with ðf/ðχj 11 and (5) respectively, leads (after some manipulation) to
(7)
χj11
σ V
pλ
χi11
(8)
χi 21
p1 χ
, χi11
!> 2t )
22