Second, by (11), mi(θ-i,θk) ≥ θk for all mi(p,θ-i) = θk for all (θk,θ-ə ∈
Yi∩supp(p) such that ζθk-1 ,θ-i¢ ∈ Yi. By VETO-IC and this property,
P [θik - mi(θik,θ-i)]p(θik,θ-i) (14)
(θik,θ-i)∈Yi
≥ P max{θik - mi (θik-1 , θ-i), 0}p(θik , θ-i)
(θik,θ-i)∈Yi
= P max{θik - mi(θik-1, θ-i), 0}p(θik, θ-i).
(θik-1,θ-i)∈Yi
By the induction hypothesis (9),
θik - mi (θik-1 ,θ-i)=θik - mE (i, θ-i ,p), for all (θik-1 , θ-i) ∈ Yi ∩ supp(p). (15)
By (15) and (12),
P max{θik - mi(θik-1, θ-i), 0}p(θik, θ-i)
(θik-1,θ-i)∈Yi∩supp(p)
= P [θik - mE(i, θ-i,p)]p(θik,θ-i)
(θik-1,θ-i)∈Yi∩supp(p)
= P [θik - mE(i, θ-i, p)]p(θik , θ-i).
(θik-1,θ-i)∈Yi
Thus,
P max{θik - mi (θik-1 , θ-i), 0}p(θik , θ-i)
(θik-1,θ-i)∈Yi
≥ P [θik -mE(p,θ-i)]p(θik,θ-i).
(θik-1,θ-i)∈Yi
This together with (14) imply that
P [θik - mi(θik,θ-i)]p(θik,θ-i) ≥ P [θik - mE(i, θ-i,p)]p(θik,θ-i).
(θik,θ-i)∈Yi (θik-1,θ-i)∈Yi
Thus, by (13),
P [θik - mi(θik,θ-i)]p(θik,θ-i) ≥ P [θik-mE(i,θ-i,p)]p(θik,θ-i),
(θik,θ-i)∈Yi (θik,θ-i)∈Yi
and hence
P mi(θik,θ-i)p(θik,θ-i) ≤ P mE(i, θ-i,p)p(θik,θ-i). (16)
(θik,θ-i)∈Yi (θik,θ-i)∈Yi
Finally, (16) implies that (11) holds as equality, as desired.
19