The Determinants of Individual Trade Policy Preferences: International Survey Evidence



Table 6. Country-specific models

Dependent variable is protect.

Australia

W.German E.German

Britain

USA

Austria

Hungary

Italy

У

У

Patriotism

0.240

0.128

0.246

0.159

0.286

0.057

0.053

0.174

(5.63)

(2.07)

(2.52)

(2.78)

(5.39)

(1.09)

(0.98)

(3.91)

Chauvinism

0.344

0.425

0.433

0.510

0.419

0.454

0.225

0.299

(9.76)

(7.12)

(4.85)

(9.18)

(9.54)

(8.97)

(4.62)

(6.01)

Skill345

-0.216

(-4.04)

-0.318

(-3.59)

-0.191

(-1.40)

-0.352

(-4.38)

-0.300

(-4.58)

-0.201

(-2.20)

-0.035

(-0.41)

National mobility

0.029

-0.215

-0.338

0.089

0.056

-0.158

-0.052

0.069

(0.51)

(-2.23)

(-2.38)

(1.08)

(0.74)

(-1.94)

(-0.62)

(0.94)

International mobility

-0.119

-0.187

-0.123

-0.124

0.001

-0.154

-0.160

-0.027

(-1.76)

(-1.77)

(-0.63)

(-1.28)

(0.01)

(-1.33)

(-1.22)

(-0.31)

Never lived abroad

0.102

0.188

0.443

0.073

0.099

0.174

-0.103

0.271

(1.81)

(1.66)

(1.47)

(0.84)

(1.31)

(1.77)

(-0.73)

(2.64)

Age

0.003

-0.002

-0.013

0.003

0.002

-0.003

0.005

0.000

(1.66)

(-0.37)

(-1.96)

(1.08)

(1.18)

(-1.38)

(1.90)

(0.19)

Woman

0.333

0.405

0.680

0.191

0.155

0.311

0.074

0.215

(6.29)

(4.53)

(5.06)

(2.54)

(2.44)

(4.34)

(0.98)

(3.28)

Married

-0.060

-0.199

0.125

0.005

0.113

0.180

0.010

0.152

(-0.99)

(-2.06)

(0.82)

(0.07)

(1.79)

(2.44)

(0.14)

(2.09)

Catholic

0.083

0.014

-0.166

0.077

-0.031

-0.076

-0.033

-0.130

(L33)

(0.16)

(-0.46)

(0.61)

(-0.42)

(-0.83)

(-0.42)

(-0.84)

Cutl

-0.321

-0.177

0.047

-0.100

0.529

-0.173

-0.961

0.228

Cut2

0.863

0.971

1.255

1.228

1.431

0.750

-0.291

1.050

Cut3

1.401

1.728

1.912

2.040

2.223

1.267

0.468

1.567

Cut4

2.679

2.716

2.888

3.325

3.546

2.226

1.172

2.535

Number of obs

1827

648

285

906

1225

985

930

1084

LR chi2

313.120

179.890

104.600

243.020

276.110

226.380

50.160

124.830

Prob > chi2

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Pseudo R2

0.067

0.091

0.120

0.098

0.083

0.083

0.021

0.039

Log likelihood______■

-2164.910

-899.460

-385.137

-1113.125

-1535.116

-1255.603

-1188.651

-1553.800

Source : see text. Т-statistics are in parentheses.

34



More intriguing information

1. Industrial districts, innovation and I-district effect: territory or industrial specialization?
2. The name is absent
3. HACCP AND MEAT AND POULTRY INSPECTION
4. The name is absent
5. The name is absent
6. An alternative way to model merit good arguments
7. The name is absent
8. Technological progress, organizational change and the size of the Human Resources Department
9. The name is absent
10. Poverty transition through targeted programme: the case of Bangladesh Poultry Model