Table 6. Country-specific models
Dependent variable is protect.
Australia |
W.German E.German |
Britain |
USA |
Austria |
Hungary |
Italy | ||
У |
У | |||||||
Patriotism |
0.240 |
0.128 |
0.246 |
0.159 |
0.286 |
0.057 |
0.053 |
0.174 |
(5.63) |
(2.07) |
(2.52) |
(2.78) |
(5.39) |
(1.09) |
(0.98) |
(3.91) | |
Chauvinism |
0.344 |
0.425 |
0.433 |
0.510 |
0.419 |
0.454 |
0.225 |
0.299 |
(9.76) |
(7.12) |
(4.85) |
(9.18) |
(9.54) |
(8.97) |
(4.62) |
(6.01) | |
Skill345 |
-0.216 (-4.04) |
-0.318 (-3.59) |
-0.191 (-1.40) |
-0.352 (-4.38) |
-0.300 (-4.58) |
-0.201 (-2.20) |
-0.035 (-0.41) | |
National mobility |
0.029 |
-0.215 |
-0.338 |
0.089 |
0.056 |
-0.158 |
-0.052 |
0.069 |
(0.51) |
(-2.23) |
(-2.38) |
(1.08) |
(0.74) |
(-1.94) |
(-0.62) |
(0.94) | |
International mobility |
-0.119 |
-0.187 |
-0.123 |
-0.124 |
0.001 |
-0.154 |
-0.160 |
-0.027 |
(-1.76) |
(-1.77) |
(-0.63) |
(-1.28) |
(0.01) |
(-1.33) |
(-1.22) |
(-0.31) | |
Never lived abroad |
0.102 |
0.188 |
0.443 |
0.073 |
0.099 |
0.174 |
-0.103 |
0.271 |
(1.81) |
(1.66) |
(1.47) |
(0.84) |
(1.31) |
(1.77) |
(-0.73) |
(2.64) | |
Age |
0.003 |
-0.002 |
-0.013 |
0.003 |
0.002 |
-0.003 |
0.005 |
0.000 |
(1.66) |
(-0.37) |
(-1.96) |
(1.08) |
(1.18) |
(-1.38) |
(1.90) |
(0.19) | |
Woman |
0.333 |
0.405 |
0.680 |
0.191 |
0.155 |
0.311 |
0.074 |
0.215 |
(6.29) |
(4.53) |
(5.06) |
(2.54) |
(2.44) |
(4.34) |
(0.98) |
(3.28) | |
Married |
-0.060 |
-0.199 |
0.125 |
0.005 |
0.113 |
0.180 |
0.010 |
0.152 |
(-0.99) |
(-2.06) |
(0.82) |
(0.07) |
(1.79) |
(2.44) |
(0.14) |
(2.09) | |
Catholic |
0.083 |
0.014 |
-0.166 |
0.077 |
-0.031 |
-0.076 |
-0.033 |
-0.130 |
(L33) |
(0.16) |
(-0.46) |
(0.61) |
(-0.42) |
(-0.83) |
(-0.42) |
(-0.84) | |
Cutl |
-0.321 |
-0.177 |
0.047 |
-0.100 |
0.529 |
-0.173 |
-0.961 |
0.228 |
Cut2 |
0.863 |
0.971 |
1.255 |
1.228 |
1.431 |
0.750 |
-0.291 |
1.050 |
Cut3 |
1.401 |
1.728 |
1.912 |
2.040 |
2.223 |
1.267 |
0.468 |
1.567 |
Cut4 |
2.679 |
2.716 |
2.888 |
3.325 |
3.546 |
2.226 |
1.172 |
2.535 |
Number of obs |
1827 |
648 |
285 |
906 |
1225 |
985 |
930 |
1084 |
LR chi2 |
313.120 |
179.890 |
104.600 |
243.020 |
276.110 |
226.380 |
50.160 |
124.830 |
Prob > chi2 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
Pseudo R2 |
0.067 |
0.091 |
0.120 |
0.098 |
0.083 |
0.083 |
0.021 |
0.039 |
Log likelihood______■ |
-2164.910 |
-899.460 |
-385.137 |
-1113.125 |
-1535.116 |
-1255.603 |
-1188.651 |
-1553.800 |
Source : see text. Т-statistics are in parentheses.
34
More intriguing information
1. Industrial districts, innovation and I-district effect: territory or industrial specialization?2. The name is absent
3. HACCP AND MEAT AND POULTRY INSPECTION
4. The name is absent
5. The name is absent
6. An alternative way to model merit good arguments
7. The name is absent
8. Technological progress, organizational change and the size of the Human Resources Department
9. The name is absent
10. Poverty transition through targeted programme: the case of Bangladesh Poultry Model