Fischer, M.M. and Leung, Y. (1998): A genetic-algorithm based evolutionary
computational neural network for modelling spatial interaction data, The Annals of
Regional Science 32(3), 437-458
Fischer, M.M. and Reismann, M. (2000): Evaluating neural spatial interaction
modelling by bootstrapping. Paper presented at the 6th World Congress of the
Regional Science Association International, Lugano, Switzerland, May 16-20, 2000
Fischer, M.M., Hlavackova-Schindler, K. and Reismann, M. (1999): A global search
procedure for parameter estimation in neural spatial interaction modelling, Papers in
Regional Science 78, 119-134
Flowerdew, R. and Aitkin, M. (1982): A method of fitting the gravity model based on
the Poisson distribution, Journal of Regional Science 22, 191-202
Fotheringham, A.S. (1983): A new set of spatial interaction models: The theory of
competing destinations, Environment and Planning A 22, 527-549
Fotheringham, A.S. and O’Kelly, M.E. (1989): Spatial interaction models:
Formulations and applications. Kluwer, Dordrecht, Boston and London
Giles, C. and Maxwell, T. (1987): Learning, invariance, and generalization in high-
order neural networks, Applied Optics 26(23), 4972-4978
Harth, E. and Pandya, A.S. (1988): Dynamics of ALOPEX process: Application to
optimization problems. In Ricciardi, L.M. (ed.): Biomathematics and related
computational problems, pp. 459-471. Kluwer, Dordrecht, Boston and London
Hassoun, M.H. (1995): Fundamentals of neural networks. MIT Press, Cambridge [MA]
and London [England]
Hecht-Nielsen, R. (1990): Neurocomputing. Addison-Wesley, Reading [MA]
Hornik, K., Stinchcombe, M. and White, H. (1989): Multilayer feedforward networks
are universal approximators, Neural Networks 2, 359-366
Ismail, A. and Engelbrecht, A.P. (1999): Training product units in feedforward neural
networks using particle swarm optimization, In Bajic, V.B. and Sha, D. (eds.):
Proceedings of the International Conference on Artificial Intelligence, Durban, pp.
36-40. South Africa
35