Table 1 Explanatory variables of management and planning of urban green spaces
_______________________Performance of Urban Green Space Policy in European Cities_______________________ | |||||||||
Availability of |
Importance of |
Changes in green _____spaces |
Budget for green spaces |
Planning of green spaces |
Success | ||||
. A1. . |
ɪ a2 |
A!------ |
A4 |
A5 |
______A7______ |
A8 |
. D1. , | ||
Cities |
Proportion of |
Importance of green |
Recent changes in |
Annual budget |
Changes in the |
—, Existence of |
Number of |
Experience |
Success level |
Alphen aan den Rijn |
57153 |
1 |
34 |
1 |
1 |
2 |
1 | ||
Antwerp |
51509 |
2 |
________________________1 |
1,59 |
2 |
2 |
1 |
1 |
1 |
Berlin_____________ |
_______37846 |
1 |
___________________________1 |
_____________0,7 |
~ |
~ |
___________________2 |
_____________________1 |
__________________3 |
Bern_____________ |
_______30510 |
___________________2 |
___________________________1 |
_____________2 |
_______________________1 |
__________________1 |
_____________________1 |
_______________2 | |
Birmingham |
20000 |
3 |
________________________1 |
1,14 |
2 |
1 |
1 |
1 |
2 |
Budapest__________ |
61800 |
3 |
________________2 |
_______________________1 |
~ |
~~2 |
2 |
~ |
3 |
Cracovia |
65455 |
3 |
______________2 |
- |
1 |
1 |
2 |
1 |
3 |
Dublin |
40000 |
2 |
___________________3 |
~ |
_____________________1 |
_______________________1 |
2 |
_____________________1 |
2 |
Edinburgh |
144592 |
2 |
______________2 |
- |
2 |
1 |
2 |
1 |
3 |
Espoo____________ |
140000 |
2 |
___________________________1 |
L3 |
~ |
_______________________1 |
1 |
_____________________1 |
2 |
Genoa___________ |
_______49394 |
___________________2 |
___________________________1 |
_______________________1 |
_______________3 |
______________2 |
___________________2 |
_____________2 |
__________________3 |
Helsinki |
102867 |
2 |
______________2 |
- |
2 |
1 |
1 |
1 |
2 |
Istanbul____________ |
5000 |
1 |
___________________________1 |
16,6 |
~ |
~~2 |
2 |
~ |
1 |
Leipzig____________ |
_______93652 |
______________________3 |
___________________________1 |
____________1,27 |
_____________2 |
_______________________1 |
___________________2 |
_____________________1 |
_______________2 |
Ljubljana |
25971 |
3 |
______________2 |
- |
1 |
2 |
2 |
1 |
4 |
Lodz |
65600 |
3 |
0,5 |
1 |
2 |
1 |
2 |
4 | |
Malaga__________ |
7790 |
2 |
1 |
_______________________1 |
~ |
~ |
2 |
~ |
2 |
Marseilles__________ |
118225 |
_______________________________1 |
___________________________1 |
_______________________1 |
_____________________1 |
______________2 |
__________________1 |
_____________2 |
_______________1 |
Montpellier |
33000 |
2 |
________________________1 |
4 |
1 |
2 |
2 |
1 |
1 |
Salzburg___________ |
13440 |
2 |
________________2 |
______________1,3 |
_____________2 |
~ |
2 |
_____________________1 |
_______________2 |
Sarajevo___________ |
_______11000 |
___________________2 |
________________2 |
______________7 |
_____________________1 |
______________2 |
___________________2 |
_____________________1 |
__________________3 |
Turin_____________ |
_______19444 |
______________________3 |
___________________________1 |
_______________________1 |
_______________3 |
______________2 |
___________________2 |
_____________________1 |
_______________2 |
Vienna___________ |
125441,09 |
___________________2 |
________________2 |
_______________________1 |
_______________3 |
______________2 |
___________________2 |
_____________________1 |
_______________2 |
Warsaw_________ |
_______68499 |
___________________2 |
________________2 |
___________0,79 |
_____________________1 |
_______________________1 |
___________________2 |
_____________________1 |
_______________2 |
Zurich |
111919 |
___________________2 |
______________2 |
0,01-0,03 |
_____________________1 |
_______________________1 |
_______________________________1 |
_____________________1 |
_________________________1 |
More intriguing information
1. The name is absent2. Innovation and business performance - a provisional multi-regional analysis
3. Policy Formulation, Implementation and Feedback in EU Merger Control
4. The Folklore of Sorting Algorithms
5. Can a Robot Hear Music? Can a Robot Dance? Can a Robot Tell What it Knows or Intends to Do? Can it Feel Pride or Shame in Company?
6. The name is absent
7. Estimation of marginal abatement costs for undesirable outputs in India's power generation sector: An output distance function approach.
8. Human Resource Management Practices and Wage Dispersion in U.S. Establishments
9. The name is absent
10. Proceedings of the Fourth International Workshop on Epigenetic Robotics