= = β0 + β1*Y + β2*Y2 + β3*Y3 + β4*Y4 + β5*Y5
(30)
GI = Y00 + Y1O*Y + Y√Y2 + y√y3 + Y40*y4 + Y√Y5
+ (γoι + T11*Y + Y21*Y2 + Y30*Y3 + Y40*y4 + γ√Y5)DY
+ (‰2 + Y12*Y + Y22*Y2 + Y30*Y3 + Y40*Y4 + Y√Y5)DSEZ (31)
If the neighbor income again is assumed to be the average income DY2 = o, and
following DY22 = 0, we have the distribution of growth on income groups described
by a third degree polynomial which gives the final expanded form for attracting more
investments, and the final form for distribution and growth.
If
MGI = Yoo + Yιo*Y + Y20*Y2 + Y30*Y3 + Y40*Y4 + Y50*Y5 (32)
that is the investments for DY1 = DY2 = 0.
Then
DGY1 = «00 + («10 - O11DY)GI1
+ β10 («10 - «11DY)(«10 — α11DY2)GI2
- («00 + («10 - du*0)MGI
+ β10 (⅜0 - ⅜1*0)(α10 - αu*0)MGI) (33)
Inserting (31) in (26) we have
GY = K00 + K10*Y + K20*Y2 + K30*Y3 + K40*Y4 + K50*Y5
+ ( κ01 + κ11*Y + k21*Y2 + κ31*Y3 + k41*Y4 + k51*Y5)DSEZ
- (( K02 + K12*Y + K22*Y2 + K32*Y3 + K42*Y4 + K52*Y5 )
+ ( κ03 + κ13*Y + k23*Y2 + κ33*Y3 + k43*Y4 + k53*Y5)DSEZ)* DY
+ ( K04 + K14*Y + K24*Y2 + K34*Y3 + K44*Y4 + K54*Y5)DY2 (34)
and
DGY = ( κ01 + κ11*Y + k21*Y2 + κ31*Y3 + k41*Y4 + κ51*Y5)DSEZ
- (( K02 + K12*Y + K22*Y2 + K32*Y3 + K42*Y4 + K52*Y5 )
+ ( κ03 + κ13*Y + κ23*Y2 + κ33*Y3 + k43*Y4 + κ53*Y5)DSEZ)* DY
+ ( K04 + K14*Y + K24*Y2 + K34*Y3 + K44*Y4 + K54*Y5)DY2 (35)
11