188
Province |
Land (hectares) |
Settlers (number) |
Cost of (K) | |||
Available |
Cleared |
Uncleared |
Current |
Shortfall | ||
Northern | ||||||
Mpika |
4,000 |
209 |
3,791 |
57 |
1,516,400 | |
Isoka |
1,165 |
161 |
1,004 |
24 |
16 |
401,600 |
Chinsali |
1,500 |
159 |
1,341 |
22 |
16 |
536,400 |
Mporokoso |
250 |
150 |
100 |
35 |
3 |
40,000 |
Kaputa |
725 |
40 |
685 |
11 |
274,000 | |
Mbala |
150 |
150 |
38 | |||
Kasama |
1,000 |
212 |
788 |
55 |
315,200 | |
Luwingu |
220 |
135 |
85 |
45 |
- |
34,000 |
Subtotal |
9,010 |
1,216 |
7,794 |
287 |
35 |
3,117,600 |
North-Western | ||||||
Solwezi |
210 |
100 |
110 |
27 |
- |
44,000 |
Mwinilunga |
174 |
174 |
18 |
26 |
- | |
Kabompo |
500 |
40 |
460 |
22 |
184,000 | |
Zambezi |
500 |
50 |
450 |
28 |
180,000 | |
Chizera |
300 |
50 |
250 |
12 |
1 |
100,000 |
Kasempa |
236 |
156 |
80 |
22 |
17 |
32,000 |
Subtotal |
1,920 |
570 |
1,350 |
129 |
44 |
540,000 |
Southern | ||||||
Livingstone |
1,800 |
208 |
1,592 |
65 |
382,080 | |
Choma |
500 |
260 |
240 |
38 |
27 |
57,600 |
Kalomo |
5,333 |
190 |
5,143 |
25 |
23 |
1,234,320 |
Monze |
2,181 |
160 |
2,021 |
28 |
12 |
485,040 |
Mazabuka |
628 |
107 |
521 |
23 |
4 |
125,040 |
Namwala |
150 |
47 |
103 |
7 |
5 |
24,720 |
Sinazongwe |
65 |
57 |
8 |
26 |
1,920 | |
Subtotal |
10,657 |
1,029 |
9,628 |
212 |
71 |
2,310,720 |
Western | ||||||
Kaoma |
360 |
100 |
260 |
15 |
10 |
62,400 |
Mongu |
500 |
500 |
- |
25 |
100 |
- |
Senanga |
4,704 |
55 |
4,649 |
10 |
4 |
1,115,760 |
Sesheke |
44 |
44 |
- |
34 |
- |
- |
Kalabo |
500 |
500 |
10 |
109 |
- | |
Lukulu |
38 |
38 |
17 |
- | ||
Subtotal |
6,146 |
1,237 |
4,909 |
111 |
223 |
1,178,160 |
Grand total |
49,150 |
8,210 |
40,964 |
1,434 |
807 |
12,514,940 |
More intriguing information
1. WP 92 - An overview of women's work and employment in Azerbaijan2. Financial Market Volatility and Primary Placements
3. The name is absent
4. The name is absent
5. The name is absent
6. The WTO and the Cartagena Protocol: International Policy Coordination or Conflict?
7. The Dynamic Cost of the Draft
8. Estimation of marginal abatement costs for undesirable outputs in India's power generation sector: An output distance function approach.
9. Campanile Orchestra
10. Non-causality in Bivariate Binary Panel Data