EtbtR+1 = |
ACRPIbtR, |
R RR bt = mcn xt |
πR 1 πR K R1 , and ARPI ≡ | |||
1 — α(2a — 1) + ʌ' 1 + J1 |
α2 |
(2a— 1) — |
α J2 (1 + αJ1 ) |
J3 (1 + αJ1) |
0 | |
— (2a — 1) + J1J1 |
α(2a — 1) |
J2 J1 |
J3J1 |
0 | ||
0 |
0 |
0 |
1 |
0 | ||
Λι(2α-1) |
0 |
2(1-a)μ |
1+2(1-a)βμ |
0 | ||
_ Γ σ(2a-1)C . 4θa(1-a) Z1 - [ = + (2a-1) =J |
J4 |
0 |
0 |
1+ |
C+δ2(1-a) | |
where J1 = (1-Л2)22а-1), J2 = |
2(1 |
-a)μ -1)β , J3 = |
μ—β(2a-1)and J4 |
= ((21a-1)) KZ [1 + α4θa(1 — a)] + |
σα(2a — 1) K=. Now there are two predetermined variables KR and ΠR-1. Note that the
eigenvalue associated with the capital stock dynamics is the same regardless of the index
of inflation targeted. The Appendix proves the following:
Proposition 3 Suppose that monetary policy reacts to current-looking consumer price
inflation. Then for an active monetary policy (μ > 1), the necessary and sufficient con-
ditions for determinacy of the difference system are:
(Case I) a > 0.5 and at least one of (33) and (34) is satisfied;
(2β — l)Λ2 — Λι [Λ2 + α(1 — Λ2)(2a — 1)]
Λ2β2(l — a)
(33)
2(1
ʌ λ4
a) + Â2J
2(1 — a)(1 — β)μ + λ ^1 Л2)] — (1 + Λι)
Λ2
+ (1 — β) + μ [Λι — Λ4] + 2(1 — a)μβ + —— > 0;
Λ2
(34)
1 Γ . C 1
(Case II) 0.5 > a > 2—δ 1 — δ — = 2
and
Λ 2Λ-2(1 + β)[1 + 2μ(1 — a)] .,. 2α(1 — 2a) ,
1 < (1+ μ)[α(1 — 2a)(2 — Λ2) — Λ2] if 1 + α(1 — 2a) > 2,
(35)
and at least one of (33) and (34) is satisfied;
17
More intriguing information
1. The name is absent2. Education as a Moral Concept
3. The demand for urban transport: An application of discrete choice model for Cadiz
4. L'organisation en réseau comme forme « indéterminée »
5. The name is absent
6. A Rare Case Of Fallopian Tube Cancer
7. The name is absent
8. Lending to Agribusinesses in Zambia
9. Neural Network Modelling of Constrained Spatial Interaction Flows
10. The name is absent