Investment and Interest Rate Policy in the Open Economy



four eigenvalues are determined by the upper left 4 × 4 submatrix of ACRP I , denoted by

rR             ,    ,         . .         .     . rR .

ACPI. Then the characteristic equation of ACPI is

r r3 + a3r2 + a2r + a1 = 0

where

a3 = -1


1   Λ1


ββ


1 α(1 - Λ2)(2a - 1)∙

.                   Λ2             .


— 2(1 — a)μ


1    λ-1Λ 1 α(1 - Л2)(2а - 1)

a2 = β + 1 +-----Λ2-----,


ι αΛ1(2a — 1) ι 2(1 — a)μ(1 + β)

+   Λ2β   + β


μΓ             Λ'α(2a - 1)

a1 = - β 2(1 - a) +----Λ----

Hence one eigenvalue is zero and the three remaining eigenvalues are the solutions to the
cubic equation
r3 + a3r2 + a2r + a1 = 0. Determinacy requires two eigenvalues to lie inside
the unit circle and the other three eigenvalues to lie outside the unit circle. First suppose
the eigenvalue
eK is outside the unit circle |eK | 1, which requires either a > 0.5 or
0
.5 > a > 2-1δ [1 — δ 1 =]. Then using Proposition C.2 of Woodford (2003), two of the
remaining three eigenvalues are outside the unit circle and one eigenvalue is inside the
unit circle if and only if: (Case I)

1 + a3 + a2 + a1 0 ⇔


(μ ɪ^1 [1 — (2a — 1)α] 0,
β


(B1)


— 1+a3—a2+a1 0 -⇔ —2(1+β)—4μ(1—a)(1+β) — (μ+1)Λι


1 I (2a 1)α(2 ^) 1    0

1+        Λ2       J >0,

(B2)


or (Case II)

1 + a3 + a2 + ɑɪ 0 ⇔ ———1 [1 — (2a — 1)α] 0,           (B3)


— 1+a3—a2+a1 0 ⇔ —2(1+β)—4μ(1—a)(1+β) — (μ+1)Λι


and either


1 (2a — 1)α(2 — Λ2)'
. +           Λ2          .


< 0,

(B4)


a1 a1a3 + a2 — 1 0,                           (B5a)


31




More intriguing information

1. CONSUMER ACCEPTANCE OF GENETICALLY MODIFIED FOODS
2. Backpropagation Artificial Neural Network To Detect Hyperthermic Seizures In Rats
3. The Context of Sense and Sensibility
4. HACCP AND MEAT AND POULTRY INSPECTION
5. Word searches: on the use of verbal and non-verbal resources during classroom talk
6. The name is absent
7. Inhimillinen pääoma ja palkat Suomessa: Paluu perusmalliin
8. Technological progress, organizational change and the size of the Human Resources Department
9. The Global Dimension to Fiscal Sustainability
10. The Clustering of Financial Services in London*