Context-Dependent Thinning 22
evaluation of similarity or finding the most similar compositional items allowed by such representations
are extremely useful for solution of a wide range of AI problems.
Acknowledgements: The authors are grateful to Pentti Kanerva and Tony Plate for their extensive and
helpful comments, valuable suggestions, and continuous support. This work was funded in part by the
International Science Foundation Grants U4M000 and U4M200.
References
Amari, S. (1989). Characteristics of sparsely encoded associative memory. Neural Networks, 2, 445-457.
Amosov, N. M. (1967). Modelling of thinking and the mind. New York: Spartan Books.
Amosov, N. M., Baidyk, T. N., Goltsev, A. D., Kasatkin, A. M., Kasatkina, L. M., Kussul, E. M., &
Rachkovskij, D. A. (1991). Neurocomputers and intelligent robots. Kiev: Naukova dumka. (In
Russian).
Artykutsa, S. Ya., Baidyk, T. N., Kussul, E. M., & Rachkovskij, D. A. (1991). Texture recognition using
neurocomputer. (Preprint 91-8). Kiev, Ukraine: V. M. Glushkov Institute of Cybernetics. (In
Russian).
Baidyk, T. N., Kussul, E. M., & Rachkovskij, D. A. (1990). Numerical-analytical method for neural
network investigation. In Proceedings of The International Symposium on Neural Networks and
Neural Computing - NEURONET'90 (pp. 217-222). Prague, Czechoslovakia.
Blair, A. D. (1997). Scaling-up RAAMs. (Technical Report CS-97-192). Brandeis University,
Department of Computer Science.
Fedoseyeva, T. V. (1992). The problem of training neural network training to recognize word roots. In
Neuron-like networks and neurocomputers (pp. 48-54). Kiev, Ukraine: V. M. Glushkov Institute of
Cybernetics. (In Russian).
Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6,
205-254.
Feldman, J. A. (1989). Neural Representation of Conceptual Knowledge. In L. Nadel, L. A. Cooper, P.
Culicover, & R. M. Harnish (Eds.), Neural connections, mental computation (pp. 68-103).
Cambridge, Massachusetts, London, England: A Bradford Book, The MIT Press.
Foldiak, P., & Young, M. P. (1995). Sparse Coding in the Primate Cortex. In M. A. Arbib (Ed.),
Handbook of brain theory and neural networks (pp. 895-898). Cambridge, MA: MIT Press.
Frasconi, P., Gori, M., & Sperduti, A. (1997). A general framework for adaptive processing of data
structures. Technical Report DSI-RT-15/97. Firenze, Italy: Universita degli Studi di Firenze,
Dipartimento di Sistemi e Informatica.
Frolov, A. A., & Muraviev, I. P. (1987). Neural models of associative memory. Moscow: Nauka. (In
Russian).
Frolov, A. A., & Muraviev, I. P. (1988). Informational characteristics of neuronal and synaptic plasticity.
Biophysics, 33, 708-715.
Frolov, A. A. (1989). Information properties of bilayer neuron nets with binary plastic synapses.
Biophysics, 34, 868-876.
Gayler, R. W. (1998). Multiplicative binding, representation operators, and analogy. In K. Holyoak, D.
Gentner, & B. Kokinov (Eds.), Advances in analogy research: Integration of theory and data from
the cognitive, computational, and neural sciences. (p. 405). Sofia, Bulgaria: New Bulgarian
University. (Poster abstract. Full poster available at:
http://cogprints.soton.ac.uk/abs/comp/199807020).
Halford, G. S., Wilson W. H., & Phillips S. (in press). Processing capacity defined by relational
complexity: implications for comparative, developmental, and cognitive psychology. Behavioral and
Brain Sciences.
Hebb, D. O. (1949). The organization of behavior. New York: Wiley.