Draft of paper published in:



Context-Dependent Thinning 25

Rachkovskij, D. A. & Fedoseyeva, T. V. (1990). On audio signals recognition by multilevel neural
network. In
Proceedings of The International Symposium on Neural Networks and Neural Computing
- NEURONET'90 (
pp. 281-283). Prague, Czechoslovakia.

Rachkovskij, D. A. & Fedoseyeva T. V. (1991). Hardware and software neurocomputer system for
recognition of acoustical signals. In
Neuron-like networks and neurocomputers (pp. 62-68). Kiev,
Ukraine: V. M. Glushkov Institute of Cybernetics. (In Russian).

Shastri, L. & Ajjanagadde, V. (1993). From simple associations to systematic reasoning: connectionist
representation of rules, variables, and dynamic bindings using temporal synchrony.
Behavioral and
Brain Sciences, 16
, 417-494.

Sjodin, G. (1998). The Sparchunk Code: a method to build higher-level structures in a sparsely encoded
SDM
. In Proceedings of IJCNN'98 (pp. 1410-1415), IEEE, Piscataway, NJ: IEEE.

Sjodin, G., Kanerva, P., Levin, B., & Kristoferson, J. (1998). Holistic higher-level structure-forming
algorithms. In
Proceedings of 1998 Real World Computing Symposium - RWC'98 (pp. 299-304).

Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in
connectionist systems.
Artificial Intelligence, 46, 159-216.

Sperduti, A. (1994). Labeling RAAM. Connection Science, 6, 429-459.

Sperduti, A. & Starita, A. (1997). supervised neural networks for the classification of structures. IEEE
Transactions on Neural Networks, 8
, 714-735.

Tsodyks, M. V. (1989). Associative memory in neural networks with the Hebbian learning rule. Modern
Physics Letters B, 3
, 555-560.

Touretzky, D. S. (1990). BoltzCONS: Dynamic symbol structures in a connectionist network. Artificial
Intelligence, 46
, 5-46.

Touretzky, D. S. (1995). Connectionist and symbolic representations. In M. A. Arbib (Ed.), Handbook of
brain theory and neural networks
(pp. 243-247). Cambridge, MA: MIT Press.

Touretzky, D. S., & Hinton, G. E. (1988). A distributed connectionist production system. Cognitive
Science, 12
, 423-466.

Vedenov, A. A. (1987). "Spurious memory" in model neural networks. (Preprint IAE-4395/1). Moscow:
I. V. Kurchatov Institute of Atomic Energy.

Vedenov, A. A. (1988). Modeling of thinking elements. Moscow: Science. (In Russian).

von der Malsburg, C. (1981). The correlation theory of brain function. (Internal Report 81-2). Gottingen,
Germany: Max-Planck-Institute for Biophysical Chemistry, Department of Neurobiology.

von der Malsburg, C. (1985). Nervous structures with dynamical links. Ber. Bunsenges. Phys. Chem., 89,
703-710.

von der Malsburg, C. (1986) Am I thinking assemblies? In G. Palm & A. Aertsen (Eds.), Proceedings of
the 1984 Trieste Meeting on Brain Theory
(pp. 161-176). Heidelberg: Springer-Verlag.

Willshaw, D. (1981). Holography, associative memory, and inductive generalization. In G. E. Hinton &

J. A. Anderson (Eds.), Parallel models of associative memory (pp. 83-104). Hillside, NJ: Lawrence
Erlbaum Associates.

Willshaw, D. J., Buneman, O. P., & Longuet-Higgins, H. C. (1969). Non-holographic associative
memory.
Nature, 222, 960-962.



More intriguing information

1. The Economic Value of Basin Protection to Improve the Quality and Reliability of Potable Water Supply: Some Evidence from Ecuador
2. Washington Irving and the Knickerbocker Group
3. The name is absent
4. Regulation of the Electricity Industry in Bolivia: Its Impact on Access to the Poor, Prices and Quality
5. Internationalization of Universities as Internationalization of Bildung
6. The open method of co-ordination: Some remarks regarding old-age security within an enlarged European Union
7. Commuting in multinodal urban systems: An empirical comparison of three alternative models
8. The name is absent
9. Visual Artists Between Cultural Demand and Economic Subsistence. Empirical Findings From Berlin.
10. The urban sprawl dynamics: does a neural network understand the spatial logic better than a cellular automata?