Draft of paper published in:



Context-Dependent Thinning 25

Rachkovskij, D. A. & Fedoseyeva, T. V. (1990). On audio signals recognition by multilevel neural
network. In
Proceedings of The International Symposium on Neural Networks and Neural Computing
- NEURONET'90 (
pp. 281-283). Prague, Czechoslovakia.

Rachkovskij, D. A. & Fedoseyeva T. V. (1991). Hardware and software neurocomputer system for
recognition of acoustical signals. In
Neuron-like networks and neurocomputers (pp. 62-68). Kiev,
Ukraine: V. M. Glushkov Institute of Cybernetics. (In Russian).

Shastri, L. & Ajjanagadde, V. (1993). From simple associations to systematic reasoning: connectionist
representation of rules, variables, and dynamic bindings using temporal synchrony.
Behavioral and
Brain Sciences, 16
, 417-494.

Sjodin, G. (1998). The Sparchunk Code: a method to build higher-level structures in a sparsely encoded
SDM
. In Proceedings of IJCNN'98 (pp. 1410-1415), IEEE, Piscataway, NJ: IEEE.

Sjodin, G., Kanerva, P., Levin, B., & Kristoferson, J. (1998). Holistic higher-level structure-forming
algorithms. In
Proceedings of 1998 Real World Computing Symposium - RWC'98 (pp. 299-304).

Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in
connectionist systems.
Artificial Intelligence, 46, 159-216.

Sperduti, A. (1994). Labeling RAAM. Connection Science, 6, 429-459.

Sperduti, A. & Starita, A. (1997). supervised neural networks for the classification of structures. IEEE
Transactions on Neural Networks, 8
, 714-735.

Tsodyks, M. V. (1989). Associative memory in neural networks with the Hebbian learning rule. Modern
Physics Letters B, 3
, 555-560.

Touretzky, D. S. (1990). BoltzCONS: Dynamic symbol structures in a connectionist network. Artificial
Intelligence, 46
, 5-46.

Touretzky, D. S. (1995). Connectionist and symbolic representations. In M. A. Arbib (Ed.), Handbook of
brain theory and neural networks
(pp. 243-247). Cambridge, MA: MIT Press.

Touretzky, D. S., & Hinton, G. E. (1988). A distributed connectionist production system. Cognitive
Science, 12
, 423-466.

Vedenov, A. A. (1987). "Spurious memory" in model neural networks. (Preprint IAE-4395/1). Moscow:
I. V. Kurchatov Institute of Atomic Energy.

Vedenov, A. A. (1988). Modeling of thinking elements. Moscow: Science. (In Russian).

von der Malsburg, C. (1981). The correlation theory of brain function. (Internal Report 81-2). Gottingen,
Germany: Max-Planck-Institute for Biophysical Chemistry, Department of Neurobiology.

von der Malsburg, C. (1985). Nervous structures with dynamical links. Ber. Bunsenges. Phys. Chem., 89,
703-710.

von der Malsburg, C. (1986) Am I thinking assemblies? In G. Palm & A. Aertsen (Eds.), Proceedings of
the 1984 Trieste Meeting on Brain Theory
(pp. 161-176). Heidelberg: Springer-Verlag.

Willshaw, D. (1981). Holography, associative memory, and inductive generalization. In G. E. Hinton &

J. A. Anderson (Eds.), Parallel models of associative memory (pp. 83-104). Hillside, NJ: Lawrence
Erlbaum Associates.

Willshaw, D. J., Buneman, O. P., & Longuet-Higgins, H. C. (1969). Non-holographic associative
memory.
Nature, 222, 960-962.



More intriguing information

1. Education Responses to Climate Change and Quality: Two Parts of the Same Agenda?
2. AN ECONOMIC EVALUATION OF THE COLORADO RIVER BASIN SALINITY CONTROL PROGRAM
3. Housing Market in Malaga: An Application of the Hedonic Methodology
4. Large-N and Large-T Properties of Panel Data Estimators and the Hausman Test
5. Barriers and Limitations in the Development of Industrial Innovation in the Region
6. The name is absent
7. The name is absent
8. Foreign direct investment in the Indian telecommunications sector
9. Keynesian Dynamics and the Wage-Price Spiral:Estimating a Baseline Disequilibrium Approach
10. The Impact of Financial Openness on Economic Integration: Evidence from the Europe and the Cis