328
J. Funke
Collecting data without theoretical assumptions produces puzzling situations
in which spurious correlations may suggest significant effects where no effects
are present Only the strategy of analyzing the effects of selected variations
based on some minimal theoretical premises - the experimental method -can
offer new insights into the principles and mechanisms that govern complex
human problem solving. Forthis purpose, the research strategy outlined above
offers a method for the systematic construction and variation of stimulus
material with well known characteristics which can used in future
experiments.
References
Berry, D. C. & Broadbent, D. E. (1984). On the relationship between task performance and
associated verbalizable knowledge. Quarterly Joumalof Experimental Psychology, 36,209-
231.
Berry, D. C. & Broadbent, D .E. (1987). The combination of explicit and implicit learning
processes in task control. Psychological Research, 49, 7-15.
Bosser, T. (1983). Eine nichtliπeare Regelstrategie bet der manuellen Regelung [A nonlinear
control strategy at manual control], Zeitschrift fiir Experimentelle und Angewandte
Psychologie, 30, 529-565.
Brehmer, B. (1989). Dynamic decision making. In Λ. P. Sage (Ed.), Concise encyclopedia of
information processing in systems and organizations (pp. 144-149). New York: Pergamon
Press.
Brehmer, B. (1992). Dynamic decision making: Human control of complex systems. Acta
Psychologica, 81, 211-241.
Brehmer. B. & Allard, R. (1991). Dynamic decision making: The effects of task complexity
and feedback delay. In J. Rasmussen. B. Brehmer & J. Leplat (Eds.), Distributed decision
making: Towards a basis for modeling (pp. 319-334), Chichesler Wiley.
Brehmer, B. & Domer,D. (in press). Researchwith Computerumulatedmicroworlds=Escaping
the narrow straits Ofihelaboraioryaswellasthedeepblueseaofche Γιeldsιudy. Computers
in Human Behavior.
Broadbent. D. E., FitzGerald, P., & Broadbeni. M. H. P. (1986). Implicit and explicit
knowledge in the conιrol of complex systems. British Journal of Psychology, 77, 33-50.
Buchner. A. & Funke, J. (1993). Finite state automata: Dynamic task environments in problem
solving research. Quarterly Journal of Experimental Psychology, 46A, 83-118.
Cohen, J. (1977). Statistical power analysis for the behavioral sciences (2nd ed.). New York:
Academic Press.
Conant, R. C. & Ashby, W. R. (1970). Every good regulator of a system must be a model of
that system. International Journal of System Science, 1, 89-97.
de Keyser, V. (1990). Temporal decision making in complex environments. Philosophical
Transactions of the Royal Society London, B327, 569-576.
DOmer, D. (1980). On ιhe difficulty people have in dealing with complexity. Simulation &
Games, 11, 87-106.
Chapter 14 Micro worlds Based on Linear Etjuation Systems
329
Dikner, D. (1987). On the difficulties people have in dealing with complexity. Eu J.
Rasmussen. K. Duncan, & J. Lcplal (Eds.), New technology and hitman error (pp. 97-
109). Chichester: Wiley.
D⅛ner, D. (1990). The logic of failure. In D.E. Broadbent, J. Reason, & A. Baddeley (Eds.).
Humanfactors in hazardous situations. Proceedings of a Royal Society discussion meeting
(pp⅛ 463-473). Oxford: Clarendon Press.
Dflmer1D. (1991). The investigation Ofactionregulation in uncertain and complex situations.
In J. Rasmussen, B. Brehmer, & J, Leplat (Eds.), Distributed decision making: Cognitive
models far cooperative work (pp. 349-354). New York: Wiley.
Eyferth, K., Schiknann, M. & Widowski, D. (1986). Der Umgang von Psychologen mit
Komplexitat [Psychologist's Styleofcoping with complexity]. Sprache & Kognition,5,11-
26.
Funke, J. (1984). Diagnose der Westdeutschen Problcnildscfarschung in Farm CinigerThesen
[Diagnosis of problem solving research in the FRG in form of some theses]. Sprache &
Kognition,3, 159-171,
Funke, J. (1985). Steuerung dynaraischer Systeme dutch Aufbau und Anwendung Subjektiver
Kausalmodelle [Control of dynamic systems by means of construction and application of
subjective causal models). Zeitschriftfiir Psychologie, 193, 435-457.
Funke, J. (1988). Using simulation to study complex problem solving. A review of studies in
the FRG. Simulation & Games, 19, 277-303.
Funke, J. (1990). Systemmerkmale als Determinanten des Umgangs mit dyπamischen Syslemcn
[System attributes as influence factors in dealing with dynamic systems). Sprache &
Kognition, 9, 143-153.
Furike, J. (1991). SolvingCompIex Problems: Exploradon and Control of Complex Systems.
In R. J. Stemberg & P. A. Frensch (Eds.), Complex problem solving: Principles and
Mechanisms (pp. 185-222). Hillsdale, NJ: Lawrence Erlbaum.
Funke, J. (1992). Dealing with dynamic systems: Research strategy, diagnostic approach and
experimental results. German Journal of Psychology, 16,24-43.
Funke. J. &. Buchner, A. (1992). Finite Automaten als Instrumenie fiir die Analyse von
Wissensgeleiteten Problemldseprozessen: Vorstellungeinesneuen Unlersuchungsparadigmas
[Finite automata as instruments for analyzing knowledge based problem solving processes:
Introduction of a new research paradigm]. Sprache Λ Kognition, II, 27-37.
Funke, J. & Miller, H. (1988). Eingreifen und Prognostiaeren als Determinanten von System-
identi Fikation und Systemsteuerung [Intervention and prediction as determinants of system
identification and system control]. Sprache & Kognition, 7, 176-186.
Hays, R. T. & Singer, M. J. (1989). Simulation fidelity in training system design. Bridging the
gap between reality and training. New York: Springer.
Hdbner, R. (1989). Methoden zur Analyse und Konstrukrion von Aufgaben zur kognitiven
Steuerung dynaraischer Systeme [Methods for analysis and construction of tasks for
cognitive control of dynamic systems]. Zeitschrift fur Experimentelle und Angewandte
Psychologic, 36, 271-238.
Kluwe. R.H. (1988). Methoden der Psychologic ZurGewinnungvon Daten Ubermenschliches
Wissen [Psychological methods for data acquisition about human knowledge]. In H. Mandl
& H. Spada (Eds.). Wissenspsychologie (pp. 359-385). Minchen, FRG: Psychologic Vcrlags
Union.