Taking into account the geometry of the Hall effect in the metal lamina we can
write:
(96) |
EH = -v-× B = B × v- |
(97) |
tgθH=EH=- Vt b ii |
(98) |
θH= arctgknB |
where
(99) |
kn=- E- |
kn is called electron mobility in the metal lamina. If we suppose that the electric
polarizing field EH is constant the electric voltage VH between M’ and M is:
(100) |
—7 —7 VH = EHh = V-× B ■ sinα ■ h |
where α is the angle between the vectors B and V- (if α=90o then sinα=1). The
condition EH = const is fulfilled if V- = const and B = const. The current density
J- through the surface S of the lamina is:
(101) |
7 i_ J = — = V en -S - |
(102) |
V-= RHJ- |
(103) |
RH = -1 H en |
where n denotes the number of the elementary charges e in unity volume, and
RH is called Hall resistance. RH can thus be measured to find the density of
carriers in the material.
56
More intriguing information
1. GROWTH, UNEMPLOYMENT AND THE WAGE SETTING PROCESS.2. Macro-regional evaluation of the Structural Funds using the HERMIN modelling framework
3. The name is absent
4. Inhimillinen pääoma ja palkat Suomessa: Paluu perusmalliin
5. Trade Openness and Volatility
6. Globalization and the benefits of trade
7. The name is absent
8. Dynamiques des Entreprises Agroalimentaires (EAA) du Languedoc-Roussillon : évolutions 1998-2003. Programme de recherche PSDR 2001-2006 financé par l'Inra et la Région Languedoc-Roussillon
9. The magnitude and Cyclical Behavior of Financial Market Frictions
10. The name is absent