Peer Reviewed, Open Access, Free



Table 2. Factors influencing late entry into antenatal care.

Variables

Gestational Age ≤ 13 weeks

Gestational Age > 13 weeks

χ2

df

P value

Number(%)

Number(%)

Problems in last delivery

Yes

__________16(24.2)__________

_____________50(75.8)_____________

________No________

__________55(18.3)__________

_____________246(81.7)_____________

1.24

1

0.266

Previous Caesarean sec-
tion

Yes

11 (25.0)          ~

33(75.0)

________No________

__________58(18.1)__________

_____________262(81.9)_____________

1.19

1

0.275

Problems in index preg-
nancy

Yes

__________10(26.3)__________

_____________28(73.7)_____________

________No________

__________70(17.9)__________

_____________321(82.1)_____________

1.62

1

0.204

Income per month(US dollars)

__________< 40________

__________10(10.5)__________

_____________85(89.5)_____________

________40 - 80________

__________18(17.5)__________

_____________85(82.5)_____________

_______80 - 120

__________15(21.4)__________

_____________55(78.6)_____________

__________> 120

__________25(35.2)__________

_____________46(64.8)_____________

16.06

3

0.007

Type of Family

Monogamy

__________73(19.2)__________

_____________307(80.8)_____________

Polygamy

__________7(11.5)__________

_____________54(88.5)_____________

2.12

1

0.146

Parity

Para 0

__________29(21.3)__________

_____________107(78.7)_____________

Para ≥ 1

__________55(17.3)__________

_____________263(82.7)_____________

1.03

1

0.311

Educational Status

Primary and below

__________26(14.6)__________

_____________152(85.4)_____________

Secondary and above

__________56(20.7)__________

_____________215(79.3)_____________

2.64

1

0.104

Husband’s Educational Status

Primary and below

5(13.2)

_____________33(86.8)_____________

Secondary and above

__________76(19.0)__________

_____________325(81.0)_____________

0.775

1

0.379

Age(years)

_________< 25_________

____________8(8.1)____________

_____________91(91.9)_____________

________≥ 25________

__________74(21.1)__________

_____________276(78.9)_____________

8.82

1

0.003

χ2 = Chi-square; df = degree of freedom

After adjusting for other factors, pregnant women who had primary school education or none were more likely to book late
compared to those who had secondary school education and above (OR = 2.6, 95% CI, 1.28 - 5.38). Those women who were
aged less than 25 years were more likely to register late compared to those who were older (OR = 8.3, 95% CI, 1.10 - 62.65)
(Table 3).

OnGiwJJouniafqfHeaftfi ancfjMfιeιfSciences


Table 3. Multivariate analyses of factors associated with late booking.

Variables

__________Crude OR(95% CI)__________

_________Adjusted OR(95% CI)_________

Problems in last delivery

Yes

_________________________________________1__________________________________________

__________________________________________1__________________________________________

______________No______________

___________1.431(0.759 - 2.699)__________

__________2.042(0.933 - 4.472)__________

Educational Status

Secondary and above

_________________________________________1__________________________________________

__________________________________________1__________________________________________

Primary and below

___________1.522(0.915 - 2.533)__________

_________2.631(1.287 - 5.378)**_________

Maternal age(years)

_________________< 25_________________

_________________________________________1__________________________________________

__________________________________________1__________________________________________

________________≥ 25________________

_________3.050(1.416 - 6.5.66)**_________

_________8.306(1.101 - 62. 653)*_________

* p < 0.05; ** p < 0.01; OR = Odd ratio; CI = Confidence interval



OJHAS Vol 7 Issue 1(4) Adekanle DA et al. Late Antenatal Care Booking And Its Predictors Among Pregnant Women In South Western Nigeria

http://ojhas.org



More intriguing information

1. The name is absent
2. International Financial Integration*
3. RETAIL SALES: DO THEY MEAN REDUCED EXPENDITURES? GERMAN GROCERY EVIDENCE
4. CURRENT CHALLENGES FOR AGRICULTURAL POLICY
5. Tax Increment Financing for Optimal Open Space Preservation: an Economic Inquiry
6. The name is absent
7. Großhandel: Steigende Umsätze und schwungvolle Investitionsdynamik
8. Measuring and Testing Advertising-Induced Rotation in the Demand Curve
9. Inflation and Inflation Uncertainty in the Euro Area
10. Picture recognition in animals and humans
11. Experience, Innovation and Productivity - Empirical Evidence from Italy's Slowdown
12. The Nobel Memorial Prize for Robert F. Engle
13. The demand for urban transport: An application of discrete choice model for Cadiz
14. The name is absent
15. Economic Evaluation of Positron Emission Tomography (PET) in Non Small Cell Lung Cancer (NSCLC), CHERE Working Paper 2007/6
16. PROFITABILITY OF ALFALFA HAY STORAGE USING PROBABILITIES: AN EXTENSION APPROACH
17. Rent-Seeking in Noxious Weed Regulations: Evidence from US States
18. The name is absent
19. The name is absent
20. Sector Switching: An Unexplored Dimension of Firm Dynamics in Developing Countries