segment ‘b, a,, the expression for the bonding site ‘A’ on the segment is obtained.
1
⅛α(r)
J-I m b-j∙mj
exp(∕3^2*^)exP‰)exP^ ∑ *μi)exp(∕? ∕⅛)¾a(r)> (7∙22)
2=1 i=j+l i=6j(α+l)
where, ¾α
is the I2 function for the branch segment 1b7 a,:
I‰M = y*'exp[Di(r')]A√r')Λ,i(r-)Δi*'m'(r.r-), (7.23)
and
⅛⅛<,(r) = / *,¾⅛*>>M e×p(β⅛<o+.>(r')l∆l*j,"'*,,°+1"(r. r,). (7.24)
This is depicted in fig. 7.2c. Similarly applying proc. A from the first branch segment
ζb7 Γ to the branch segment ζbj a’ gives
(⅛(α-l)
= exp(∕3 ∑ Mi)⅛α(r). (7.25)
xb (r) i=⅛ι
As discussed before, a is the ʃɪ function for the branch segment ibj a’ with
7ι⅛ι(r) = ɪ, as depicted in fig. 7.2d. Finally, substituting Xb^a from eqn. 7.22 and
Xβa from eqn. 7.25 in the Euler-Lagrange equation for the branch segment 1b7 a''
gives its density profile,
pbjJr) = exp(/?pM)exp[£>bjQ(r)]/1feJQ(r)/5).Q(r).
(7.26)
193
More intriguing information
1. FISCAL CONSOLIDATION AND DECENTRALISATION: A TALE OF TWO TIERS2. The name is absent
3. The Impact of Optimal Tariffs and Taxes on Agglomeration
4. The name is absent
5. Lumpy Investment, Sectoral Propagation, and Business Cycles
6. Moi individuel et moi cosmique Dans la pensee de Romain Rolland
7. The name is absent
8. The name is absent
9. A Pure Test for the Elasticity of Yield Spreads
10. The constitution and evolution of the stars