segment ‘b, a,, the expression for the bonding site ‘A’ on the segment is obtained.
1
⅛α(r)
J-I m b-j∙mj
exp(∕3^2*^)exP‰)exP^ ∑ *μi)exp(∕? ∕⅛)¾a(r)> (7∙22)
2=1 i=j+l i=6j(α+l)
where, ¾α
is the I2 function for the branch segment 1b7 a,:
I‰M = y*'exp[Di(r')]A√r')Λ,i(r-)Δi*'m'(r.r-), (7.23)
and
⅛⅛<,(r) = / *,¾⅛*>>M e×p(β⅛<o+.>(r')l∆l*j,"'*,,°+1"(r. r,). (7.24)
This is depicted in fig. 7.2c. Similarly applying proc. A from the first branch segment
ζb7 Γ to the branch segment ζbj a’ gives
(⅛(α-l)
= exp(∕3 ∑ Mi)⅛α(r). (7.25)
xb (r) i=⅛ι
As discussed before, a is the ʃɪ function for the branch segment ibj a’ with
7ι⅛ι(r) = ɪ, as depicted in fig. 7.2d. Finally, substituting Xb^a from eqn. 7.22 and
Xβa from eqn. 7.25 in the Euler-Lagrange equation for the branch segment 1b7 a''
gives its density profile,
pbjJr) = exp(/?pM)exp[£>bjQ(r)]/1feJQ(r)/5).Q(r).
(7.26)
193