27
A4.1 WTτ = T∫Fτ(s,τ)e-rsds
0
F- ( T ,τ) r
T 1 - e -rT
∫Fτ (s,τ)e-rs ds
0
• Temporal Independence: FτT = 0 ⇒ TτH = 0
Proof. If FτT = 0 , equation [10] reduces to
WTτ = Fτ(T,τ) - (1 -e-rT )-1 [Fτ(0,τ) - Fτ(T,τ)e-rT ]. There are two possibilities.
If
Fτ = 0, then trivially WTτ = 0 . Under Fτ ≠ 0, FτT = 0 implies that
[Fτ(0,τ)-Fτ(T,τ)e-rT]=Fτ(1-e-rT)⇒
WTτ =Fτ(T,τ)-(1-e-rT)-1Fτ(T,τ)(1-e-rT)=0. Hence, TτH =0.
• Increasing Temporal Dependence: FτT > 0 ⇒ TτH > 0
F (T τ) r
Proof. i) Assume that F, > 0 ⇒ Wt, > 0 ⇔ ------------>----—
τ Tτ T - rT
∫1-e
Fτ (s,τ)e-rsds
0
FτT > 0 ⇒
T∫Fτ(T,τ)e-rsds
0
T
> ∫Fτ (s,τ)e -rs ds ⇔
0
F- (T ,τ )(1 - e —rT )
r
> T∫Fτ(s,τ)e-rsds
0
F (T τ) r
⇔ ----τ-(-^-)--->------ . Hence, WTτ > 0 so that TH > 0.
T 1 - e-rT Tτ τ
∫Fτ (s,τ)e-rsds
0
F (T τ) r
ii) Assume thatF, < 0 ⇒ Wt < 0 ⇔ ----τ-------<-----—
τ Tτ T 1 - e-rT
∫Fτ (s,τ)e-rs ds
0
FτT > 0 ⇒
T∫Fτ(T,τ)e-rsds
0
T
> ∫Fτ (s, τ)e -rs ds ⇔
0
F- (T ,τ )(1 - e -rT )
r
> T∫Fτ(s,τ)e-rsds
0
F (T τ) r
⇔ τ------------<-----—. Hence, WTτ > 0 so that TH > 0.
T -rT Tτ τ
∫1-e
Fτ (s,τ)e-rsds
0