Optimal Private and Public Harvesting under Spatial and Temporal Interdependence



27


A4.1   WTτ = TFτ(s,τ)e-rsds

0

F- ( T ,τ)         r

T                 1 - e -rT

Fτ (s,τ)e-rs ds
0

Temporal Independence: FτT = 0 TτH = 0

Proof. If FτT = 0 , equation [10] reduces to

WTτ = Fτ(T,τ) - (1 -e-rT )-1 [Fτ(0,τ) - Fτ(T,τ)e-rT ]. There are two possibilities.

If


Fτ = 0, then trivially WTτ = 0 . Under Fτ0, FτT = 0 implies that

[Fτ(0,τ)-Fτ(T,τ)e-rT]=Fτ(1-e-rT)

WTτ =Fτ(T,τ)-(1-e-rT)-1Fτ(T,τ)(1-e-rT)=0. Hence, TτH =0.

Increasing Temporal Dependence: FτT0 TτH0
F (T τ)        r

Proof. i) Assume that F, > 0 Wt,0 ------------>----—

τ              Tτ             T                            - rT

1-e

Fτ (s,τ)e-rsds

0

FτT0

TFτ(T,τ)e-rsds

0


T

> Fτ (s,τ)e -rs ds

0


F- (T ,τ )(1 - e rT )
r


> TFτ(s,τ)e-rsds

0


F (T τ)        r

----τ-(-^-)--->------ . Hence, WTτ 0 so that TH > 0.

T                    1 - e-rT              Tτ                τ

Fτ (s,τ)e-rsds

0

F (T τ)        r

ii) Assume thatF, < 0 Wt < 0 ----τ-------<-----—

τ            Tτ           T                   1 - e-rT

Fτ (s,τ)e-rs ds
0

FτT0

TFτ(T,τ)e-rsds

0


T

> Fτ (s, τ)e -rs ds

0


F- (T ,τ )(1 - e -rT )

r


> TFτ(s,τ)e-rsds

0


F (T τ)        r

τ------------<-----—. Hence, WTτ > 0 so that TH > 0.

T                         -rT              Tτ                τ

1-e

Fτ (s,τ)e-rsds

0



More intriguing information

1. Spectral calibration of exponential Lévy Models [1]
2. THE WAEA -- WHICH NICHE IN THE PROFESSION?
3. Does Competition Increase Economic Efficiency in Swedish County Councils?
4. Fighting windmills? EU industrial interests and global climate negotiations
5. New Evidence on the Puzzles. Results from Agnostic Identification on Monetary Policy and Exchange Rates.
6. A Review of Kuhnian and Lakatosian “Explanations” in Economics
7. The name is absent
8. The name is absent
9. EXECUTIVE SUMMARIES
10. A model-free approach to delta hedging