27
A4.1 WTτ = T∫Fτ(s,τ)e-rsds
0
F- ( T ,τ) r
T 1 - e -rT
∫Fτ (s,τ)e-rs ds
0
• Temporal Independence: FτT = 0 ⇒ TτH = 0
Proof. If FτT = 0 , equation [10] reduces to
WTτ = Fτ(T,τ) - (1 -e-rT )-1 [Fτ(0,τ) - Fτ(T,τ)e-rT ]. There are two possibilities.
If
Fτ = 0, then trivially WTτ = 0 . Under Fτ ≠ 0, FτT = 0 implies that
[Fτ(0,τ)-Fτ(T,τ)e-rT]=Fτ(1-e-rT)⇒
WTτ =Fτ(T,τ)-(1-e-rT)-1Fτ(T,τ)(1-e-rT)=0. Hence, TτH =0.
• Increasing Temporal Dependence: FτT > 0 ⇒ TτH > 0
F (T τ) r
Proof. i) Assume that F, > 0 ⇒ Wt, > 0 ⇔ ------------>----—
τ Tτ T - rT
∫1-e
Fτ (s,τ)e-rsds
0
FτT > 0 ⇒
T∫Fτ(T,τ)e-rsds
0
T
> ∫Fτ (s,τ)e -rs ds ⇔
0
F- (T ,τ )(1 - e —rT )
r
> T∫Fτ(s,τ)e-rsds
0
F (T τ) r
⇔ ----τ-(-^-)--->------ . Hence, WTτ > 0 so that TH > 0.
T 1 - e-rT Tτ τ
∫Fτ (s,τ)e-rsds
0
F (T τ) r
ii) Assume thatF, < 0 ⇒ Wt < 0 ⇔ ----τ-------<-----—
τ Tτ T 1 - e-rT
∫Fτ (s,τ)e-rs ds
0
FτT > 0 ⇒
T∫Fτ(T,τ)e-rsds
0
T
> ∫Fτ (s, τ)e -rs ds ⇔
0
F- (T ,τ )(1 - e -rT )
r
> T∫Fτ(s,τ)e-rsds
0
F (T τ) r
⇔ τ------------<-----—. Hence, WTτ > 0 so that TH > 0.
T -rT Tτ τ
∫1-e
Fτ (s,τ)e-rsds
0
More intriguing information
1. Wirkt eine Preisregulierung nur auf den Preis?: Anmerkungen zu den Wirkungen einer Preisregulierung auf das Werbevolumen2. The name is absent
3. Nurses' retention and hospital characteristics in New South Wales, CHERE Discussion Paper No 52
4. The name is absent
5. ‘I’m so much more myself now, coming back to work’ - working class mothers, paid work and childcare.
6. TOMOGRAPHIC IMAGE RECONSTRUCTION OF FAN-BEAM PROJECTIONS WITH EQUIDISTANT DETECTORS USING PARTIALLY CONNECTED NEURAL NETWORKS
7. Une Gestion des ressources humaines à l'interface des organisations : vers une GRH territoriale ?
8. Nonlinear Production, Abatement, Pollution and Materials Balance Reconsidered
9. The name is absent
10. Keystone sector methodology:network analysis comparative study