between = 0.1493
avg = 6.3
overall = 0.5956 max = 7
F(8,6930) = 3371.35
corr(u_i, Xb) = -0.0159 Prob > F = 0.0000
rate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------+----------------------------------------------------------------
cosrat | 12.09587 2.207111 |
5.480 |
0.000 |
7.769256 16.42248 | |||
nbanks | .0076926 .0039979 |
1.924 |
0.054 |
-.0001444 |
.0155297 | ||
ann90 |
| 2.405859 |
.0278009 |
86.539 |
0.000 |
2.351361 |
2.460358 |
ann91 |
| 2.349755 |
.0273895 |
85.790 |
0.000 |
2.296063 |
2.403447 |
ann92 |
| 2.900835 |
.0261248 |
111.037 |
0.000 |
2.849622 |
2.952048 |
ann93 |
| .9376989 |
.0270358 |
34.684 |
0.000 |
.8847006 |
.9906973 |
ann94 |
| .2078109 |
.0251021 |
8.279 |
0.000 |
.1586032 |
.2570186 |
ann95 |
| 1.061032 |
.0235981 |
44.963 |
0.000 |
1.014772 |
1.107291 |
_cons | |
4.123241 |
.1158895 |
35.579 |
0.000 |
3.896062 |
4.350419 |
sigma_u | .72386072
sigma_e | .58378825
rho | .60590264 (fraction of variance due to u_i)
F test that all u_i=0: F(1306,6930) = 8.91 Prob > F = 0.0000
. xtreg rate 'regr3', re i(abipro) th
Random-effects GLS regression Number of obs = 8245
Group variable (i) : abipro Number of groups = 1307
R-sq: within = 0.7953 Obs per group: min = 1
between = 0.1679 avg = 6.3
overall = 0.6017 max = 7
Random effects u_i ~ Gaussian Wald chi2(8) = 27010.51
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
-------------------theta --------------------
min 5% median 95% max
0.3355 0.4677 0.6814 0.6814 0.6814
rate | Coef. Std. Err. z P>|z| [95% Conf. Interval]
------+-----------------------------------------------------------------
cosrat | 19.27733 |
1.810264 |
10.649 |
0.000 |
15.72928 |
22.82539 |
nbanks | .0094431 |
.0010258 |
9.206 |
0.000 |
.0074327 |
.0114536 |
ann90 | 2.358083 |
.0267447 |
88.170 |
0.000 |
2.305664 |
2.410501 |
ann91 | 2.297686 |
.0264207 |
86.965 |
0.000 |
2.245903 |
2.34947 |
ann92 | 2.855151 |
.0252717 |
112.978 |
0.000 |
2.80562 |
2.904683 |
ann93 | .8857715 |
.0258555 |
34.259 |
0.000 |
.8350957 |
.9364473 |
ann94 | .1722926 |
.0245146 |
7.028 |
0.000 |
.1242448 |
.2203404 |
ann95 | 1.043054 |
.0235535 |
44.285 |
0.000 |
.9968903 |
1.089218 |
_cons | 3.921392 |
.0561647 |
69.819 |
0.000 |
3.811311 |
4.031473 |
24
More intriguing information
1. The demand for urban transport: An application of discrete choice model for Cadiz2. The name is absent
3. The name is absent
4. The name is absent
5. THE CHANGING RELATIONSHIP BETWEEN FEDERAL, STATE AND LOCAL GOVERNMENTS
6. The name is absent
7. The name is absent
8. Improvements in medical care and technology and reductions in traffic-related fatalities in Great Britain
9. TINKERING WITH VALUATION ESTIMATES: IS THERE A FUTURE FOR WILLINGNESS TO ACCEPT MEASURES?
10. Effort and Performance in Public-Policy Contests