as n -→ ∞, fn - g -→p 0, then D21 -→ 0
(33)
and since i∞=1 ln f(θ, xi)g(xi) = ln f(θ, x)g(x)dx, then D22 -→ 0.
We can conclude that KIjn (θ) -→p KIj (θ), hence it is a contrast relative to the contrast function KIj (θ)
according to the Definitions 3 and 4 in Dhrymes (1998).
Further since KIjn (θ) can be rewritten as Hn (θ) - Hn(fn), where
nn
Hn(fcn) = - lnfcn(xi) fcn(xi) and Hn(θ) = - ln f (θ, xi)fcn(xi)
then
(34)
(35)
Hn(θ1) - Hn(θ2) = [Hn(θ1) -Hn(fcn)] - [Hn (θ2) -Hn(fcn)].
It follows that
Hn(θ1) - Hn(θ2) →p KIj(θ1) - KIj(θ2). (36)
By the continuity of Kullback-Leibler Information and by A3, assumption (iii) of Theorem 1 in Dhrymes
MΛΛ∩', ∙ ∙ j ∙ Γ∙ 1 ГГ11 Jl ∙ J PjI Л /Г/ɔ j∙ J ^Λ^ C 11 ∙ T J 1 1 Jl ∙ Jl
(1998) is justified. Then the consistency of the MC estimator θMj follows immediately by this same theorem.
9.2 Proof Theorem 2:
By the mean value theorem around the parameter θ*
0 = VKI(fn, fb) ` VKI(fn, fb) ∣θ. +V2KI(fn, fθ) ∣θ (bn - θn) (37)
(bn - θ∙) ' -(V2KI(fn, fθ) ∣θ)-1 ∙ VKI(fn, fθ) ∣θ. (38)
,b fl∙A (∖'d2 log f (θ,xi) bl Λ (∖'d log f (θ*,xi) bl Λ
(bn - θ) ' -(∑ ∂θi∂θj fn(xiζl ∙(Σ-----∂θ-----fn(xiζl
Г b a∙A 11 X d2 logf (θ,xi) bl Λ 1 1 X d logf (θ*,xi) bl Λ ∕9∩λ
√n(θn - θ ) ' - (n^ ∂θi∂θj fn(xi)J ∙ (√n∑ -----∂θ-----fn(x,)J . (39)
Let us define s(θ,x) = d logfθθ,xi) = dff(⅛)dθ
√n(bn - θ* ) ' -
/1 X θ fn( ∖ 1f√s X s(θ.,χi)fn(χ.A
n ∂θ n
-(An(θ))-1Wn(θ*).
(40)
Rewriting Wn (θ. ) as a second order U-statistic of the form
n n -1 n-1 n
Un = S⅛-Γ)Σ∑hk(xj-x)s(θ∙,χi)= n) ∑∑hK(xj-xi)[s(θ∙,χi)-s(θ∙,χj)] (41)
n n -
i=1 j=1 i=1 j=i+1
j6=i
23
More intriguing information
1. Langfristige Wachstumsaussichten der ukrainischen Wirtschaft : Potenziale und Barrieren2. Fiscal Insurance and Debt Management in OECD Economies
3. The name is absent
4. CURRENT CHALLENGES FOR AGRICULTURAL POLICY
5. The name is absent
6. The Shepherd Sinfonia
7. LABOR POLICY AND THE OVER-ALL ECONOMY
8. The name is absent
9. The name is absent
10. ASSESSMENT OF MARKET RISK IN HOG PRODUCTION USING VALUE-AT-RISK AND EXTREME VALUE THEORY