as n -→ ∞, fn - g -→p 0, then D21 -→ 0
(33)
and since i∞=1 ln f(θ, xi)g(xi) = ln f(θ, x)g(x)dx, then D22 -→ 0.
We can conclude that KIjn (θ) -→p KIj (θ), hence it is a contrast relative to the contrast function KIj (θ)
according to the Definitions 3 and 4 in Dhrymes (1998).
Further since KIjn (θ) can be rewritten as Hn (θ) - Hn(fn), where
nn
Hn(fcn) = - lnfcn(xi) fcn(xi) and Hn(θ) = - ln f (θ, xi)fcn(xi)
then
(34)
(35)
Hn(θ1) - Hn(θ2) = [Hn(θ1) -Hn(fcn)] - [Hn (θ2) -Hn(fcn)].
It follows that
Hn(θ1) - Hn(θ2) →p KIj(θ1) - KIj(θ2). (36)
By the continuity of Kullback-Leibler Information and by A3, assumption (iii) of Theorem 1 in Dhrymes
MΛΛ∩', ∙ ∙ j ∙ Γ∙ 1 ГГ11 Jl ∙ J PjI Л /Г/ɔ j∙ J ^Λ^ C 11 ∙ T J 1 1 Jl ∙ Jl
(1998) is justified. Then the consistency of the MC estimator θMj follows immediately by this same theorem.
9.2 Proof Theorem 2:
By the mean value theorem around the parameter θ*
0 = VKI(fn, fb) ` VKI(fn, fb) ∣θ. +V2KI(fn, fθ) ∣θ (bn - θn) (37)
(bn - θ∙) ' -(V2KI(fn, fθ) ∣θ)-1 ∙ VKI(fn, fθ) ∣θ. (38)
,b fl∙A (∖'d2 log f (θ,xi) bl Λ (∖'d log f (θ*,xi) bl Λ
(bn - θ) ' -(∑ ∂θi∂θj fn(xiζl ∙(Σ-----∂θ-----fn(xiζl
Г b a∙A 11 X d2 logf (θ,xi) bl Λ 1 1 X d logf (θ*,xi) bl Λ ∕9∩λ
√n(θn - θ ) ' - (n^ ∂θi∂θj fn(xi)J ∙ (√n∑ -----∂θ-----fn(x,)J . (39)
Let us define s(θ,x) = d logfθθ,xi) = dff(⅛)dθ
√n(bn - θ* ) ' -
/1 X θ fn( ∖ 1f√s X s(θ.,χi)fn(χ.A
n ∂θ n
-(An(θ))-1Wn(θ*).
(40)
Rewriting Wn (θ. ) as a second order U-statistic of the form
n n -1 n-1 n
Un = S⅛-Γ)Σ∑hk(xj-x)s(θ∙,χi)= n) ∑∑hK(xj-xi)[s(θ∙,χi)-s(θ∙,χj)] (41)
n n -
i=1 j=1 i=1 j=i+1
j6=i
23
More intriguing information
1. The Interest Rate-Exchange Rate Link in the Mexican Float2. Gender and headship in the twenty-first century
3. The Impact of Optimal Tariffs and Taxes on Agglomeration
4. Draft of paper published in:
5. KNOWLEDGE EVOLUTION
6. The Role of Evidence in Establishing Trust in Repositories
7. The name is absent
8. The name is absent
9. CAN CREDIT DEFAULT SWAPS PREDICT FINANCIAL CRISES? EMPIRICAL STUDY ON EMERGING MARKETS
10. Connectionism, Analogicity and Mental Content