Spectral calibration of exponential Levy models ??
25
References
Alt-Sahaiia, Y., and J. Duarte (2003): “Nonparametric option pricing under
shape restrictions.,” J. Econom., 116(1-2), 9-47.
Alt-Sahaiia, Y., and J. Jacod (2004): “Fisher’s information for discretely
sampled Levy processes,” Prepublication 950, Laboratoire de Probabilites et
Modeles Aleatoires, Paris.
Beiomestny, D., and M. ReiSS (2005): “Optimal calibration of exponential
Levy models,” Preprint 1017, Weierstraβ Institute (WIAS) Berlin.
------ (2006): “Implementation Supplement to Spectral calibration of exponen-
tial Levy processes,” Technical report, to appear, Weierstraβ Institute (WIAS)
Berlin.
Breeden, D., and R. Litzenberger (1978): “Prices of State-Contingent Claims
Implicit in Options Prices,” J. Business, 51(4), 621-651.
Brown, L. D., and M. G. Low (1996): “Asymptotic equivalence of nonpara-
metric regression and white noise.,” Ann. Stat., 24(6), 2384-2398.
Butucea, C., and C. Matias (2005): “Minimax estimation of the noise level and
of the deconvolution density in a semiparametric convolution model,” Bernoulli,
11(2), 309-340.
Carr, P., H. Geman, D. B. Madan, and M. Yor (2002): “The Fine Structure
of Asset Returns: An Empirical Investigation,” J. Business, 75(2), 305-332.
Carr, P., and D. Madan (1999): “Option valuation using the fast Fourier trans-
form,” J. Comput. Finance, 2, 61-73.
Cont, R., and P. Tankov (2004a): Financial modelling with jump processes,
Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton.
------- (2004b): “Nonparametric calibration of jump-diffusion option pricing
models,” Journal of Computational Finance, 7(3), 1-49.
Cont, R., and P. Tankov (2005): “Retrieving Levy processes from option prices:
regularization of an ill-posed inverse problem,” SIAM J. Num. Opt. Control, to
appear.
Cont, R., and E. Voitchkova (2005): “Integro-differential equations for option
prices in exponential Levy models,” Finance Stoch., 9(3), 299-325.
Crepey, S. (2003): “Calibration of the local volatility in a generalized Black-
Scholes model using Tikhonov regularization.,” SIAM J. Math. Anal., 34(5),
1183-1206.
Duffie, D., D. Fiiipovic, and W. Schachermayer (2003): “Affine processes
and applications in finance.,” Ann. Appl. Probab., 13(3), 984-1053.
Eberiein, E., U. Keiier, and K. Prause (1998): “New insights into smile,
mispricing, and value at risk: the hyperbolic model,” Journal of Business, 71(3),
371-405.
Emmer, S., and C. Klijppeiberg (2004): “Optimal portfolios when stock prices
follow an exponential Levy process,” Finance Stoch., 8(1), 17-44.
Fengier, M. (2005): Semiparametric Modeling of Implied Volatility. Springer
Finance Series.
Goidenshiuger, A., A. Tsybakov, and A. Zeevi (2005): “Optimal change-
point estimation from indirect observations,” Ann. Stat., to appear.
Jackson, N., E. Sujii, and S. Howison (1999): “Computation of deterministic
volatility surfaces,” Journal Comp. Finance, 2(2), 5-32.
Kaiisen, J. (2000): “Optimal portfolios for exponential Levy processes,” Math.
Meth. Operations Res., 51(3), 357-374.
Korosteiev, A., and A. Tsybakov (1993): Minimax theory of image recon-
struction. Lecture Notes in Statistics (Springer). 82. New York: Springer-Verlag.
Kou, S. (2002): “A jump diffusion model for option pricing,” Management Sci-
ence, 48(4), 1086-1101.
Merton, R. (1976): “Option Pricing When Underlying Stock Returns Are Dis-
continuous,” J. Financial Economics, 3(1).
Mordecki, E. (2002): “Optimal stopping and perpetual options for Levy pro-
cesses.,” Finance Stoch., 6(4), 473-493.