[13] H. Konig, ’’Measure and Integration”, Springer, Berlin et al., 1997.
[14] H. Konig, Measure and Integration: Integral representations of isotone functionals, Annales Universitatis
Saraviensis 9 (1998), 123-153.
[15] H. Konig, N. Kuhn, Angelic spaces and the double limit relation, J. London Math. Soc. 35 (1987), 454-470.
[16] V. Kratschmer, Robust representation of convex risk measures by probability measure, Finance and Stochas-
tics 9 (2005), 597-608.
[17] V. Kratschmer, Compactness in spaces of inner regular measures and a general Portmanteau lemma, SFB 649
discussion paper 2006-081, downloadable at http://sfb649.wiwi.hu-berlin.de.
[18] F. Riedel, Dynamic Coherent Risk Measures, Stochastic Processes and Applications 112 (2004), 185-200.
[19] A. Ruszczynski, A. Shapiro, Optimization of convex risk functions, Math. Oper. Res. 31 (2006), 433-451.
[20] S. Simons, A convergence theorem with boundary, Pacific J. Math. 40 (1972), 703-708.
[21] S. Weber, Distribution-invariant dynamic risk measures, information, and dynamic consistency, Math. Finance
16 (2006), 419-442.
27
More intriguing information
1. XML PUBLISHING SOLUTIONS FOR A COMPANY2. Lending to Agribusinesses in Zambia
3. The name is absent
4. The name is absent
5. Survey of Literature on Covered and Uncovered Interest Parities
6. Large Scale Studies in den deutschen Sozialwissenschaften:Stand und Perspektiven. Bericht über einen Workshop der Deutschen Forschungsgemeinschaft
7. Auctions in an outcome-based payment scheme to reward ecological services in agriculture – Conception, implementation and results
8. Keystone sector methodology:network analysis comparative study
9. Volunteering and the Strategic Value of Ignorance
10. GROWTH, UNEMPLOYMENT AND THE WAGE SETTING PROCESS.