Notes on an Endogenous Growth Model with two Capital Stocks II: The Stochastic Case



Applying the expectations operator with respect to the information set available in period
0 to all
At-1-i gives:

Eo [ln2-i(zt-1)]   <  ρρ-αt ln Ao + (1-α+1γi-αt) ln ho + αt ln ko

+ ( ι-α + (α-α)2 ) (1 - α+γ)ln B                (39)

Since F(ht, kt, ht+1, kt+1, At) F (ht, kt, 0, 0, At) holds for the per-period return func-
tion, we know that:

F πt1-1(At-1)t2-1(At-1)t1(At)t2(At),At

ln At + (1-α+γ) ln πt1-1(At-1) + α ln πt2-1 (At-1)                (40)

must also hold. Hence for any triple (ho , ko , Ao) and for any feasible plan π, the sequence
of expected one period returns satisfies:

Eo [F(,t)] ρtlnAo + α (ρρ~α ) lnAo + ( 1α + α1-α)α) (1 -α + γ)lnB
(1-α+γ-α-αt+1 ) ln ho + αt+1 ln ko,

where F(,t) := F(kt,ht,kt+1,ht+1,At). Then for any feasible plan, the expected total
returns are bounded from above:

n

Iim     l^ ftt^F(γ^l β β(1-α+γ) ln B I       ln Ao       I (1-α+γ)ln ho I α ln ko

n→∞ Eo λJβ F (,t)J (1-β)2(1-αβ) + (1-ρβ)(1-αβ) + (1-αβ)(1-β) + T-αβ.

t=o

We know from Section 3 that:

v(h, k, A) = θ+θhlnh+θklnk+θAlnA+θBlnB             (41)

is a solution to the functional equation. The coefficients θi, with i {h, k, A, B}, are
defined as follows:

Д, — __1-α+Y__ Д, — α    Д . — _____1_____ aτlΛ —  (1-α+γ)β

θh :   (1-αβ)(1-β),  θk :   1-αβ,  θA :   (1-ρβ)(1-αβ),  and θB :   (1-β)2 (1-αβ) '

Indeed these coefficients imply that the function v(h, k, A) is below the upper bound.
The policy functions associated with
v are given by:

ht+1 = B (β-α++γ2) ht,                                (42)

kt+1 = αβAtktαht1-α+γ ( (11-α+1-γβ) )1-α .                   (43)

Hence, given any initial state (ho, ko, Ao), the plan π1* [, ho, ko, Ao] generated by the first
policy rule can be calculated explicitly. Using this plan we can also calculate the second
plan
π2*[, ho, ko,Ao]; in logs, they are:

lnt1*1[,ho,ko,Ao] = tlnB + tln βι-α++γ) +lnho,

-α γ

t-1

ln t2*1[,ho,ko,Ao] = αi (ln[αβ] + (1 - α)ln ∖      +(1 - α + γ) ln h^

i=o

t-1                                                                      t-1

+ αii (1 - α + γ)   (ln [β1(-α++γ)] +ln B) + αt ln ko + αt-1-iAi.

i=o                                                             i=o

17



More intriguing information

1. The name is absent
2. The name is absent
3. The name is absent
4. Tax Increment Financing for Optimal Open Space Preservation: an Economic Inquiry
5. A Study of Adult 'Non-Singers' In Newfoundland
6. The technological mediation of mathematics and its learning
7. Fighting windmills? EU industrial interests and global climate negotiations
8. Delivering job search services in rural labour markets: the role of ICT
9. The name is absent
10. La mobilité de la main-d'œuvre en Europe : le rôle des caractéristiques individuelles et de l'hétérogénéité entre pays
11. On the origin of the cumulative semantic inhibition effect
12. The name is absent
13. I nnovative Surgical Technique in the Management of Vallecular Cyst
14. The name is absent
15. Are Public Investment Efficient in Creating Capital Stocks in Developing Countries?
16. EMU's Decentralized System of Fiscal Policy
17. Dual Track Reforms: With and Without Losers
18. Dynamic Explanations of Industry Structure and Performance
19. THE CO-EVOLUTION OF MATTER AND CONSCIOUSNESS1
20. A methodological approach in order to support decision-makers when defining Mobility and Transportation Politics