J.Q. Smith and Antonio Santos
fined through the second order Taylor approximation of log f (yt∣αt) around μt,k,
log g (yt αt∙μt,k) x l (μt,k) + l0 (μt,k) (α- μt,k) +1 l00 (μt,k) (α- μt,k¢2 (24)
= const - αt - 2 yt (---γ ( (αt - μt,k) + (αt 2μt,k) - 1! (25)
2 2β exp μttyk) , 2 y
Using this second order approximation, the density g (αt, k|Dt) is factorized as
in equation (15) and the factors are
g (at∖at-I,k,yt,μt,k} = n μt,k,σlk} (26)
and
where
and
g yyt∖μt,k)
exp (2 ɑ + 2β 2 exp ( μt,k )
Л * 2
l μt,k -

× exp
-_ yt (1 + μt,k)
∖ 2β2 exp (μt,k)
1j+ + yt ʌ 1 ï yt (1 + μt,k ) + μt,k _ 1
σηση 2β2 exp (μt,k)J y 2β2 exp (μt,k) ^1 2
2 β 2 σ П
2β2 + exp (-μt,k) σ2У2
(27)
(28)
(29)
(30)
As we sample from g (αt, k|Dt), an approximating sample, the elements in it
must be resampled in order to obtain a sample that gives a better approximation of
the target density f (αt, k|Dt). The weights used in this resampling step are
log wj
πj
У2
2β2 exp (αt,j )
yt (i_ αt,j (1 _ αj+μt,k ) + ( μt,k+μ2k ´´
2β2 exp μttjβ)
wj
p m=ι wi,
j = 1, . . . ,m
These are the so-called second stage weights that allow the modification of the
approximating distribution towards the target distribution. Obviously, these weights
G.E.M.F - F.E.U.C.
11
More intriguing information
1. The name is absent2. Mean Variance Optimization of Non-Linear Systems and Worst-case Analysis
3. Nach der Einführung von Arbeitslosengeld II: deutlich mehr Verlierer als Gewinner unter den Hilfeempfängern
4. New Evidence on the Puzzles. Results from Agnostic Identification on Monetary Policy and Exchange Rates.
5. The name is absent
6. THE AUTONOMOUS SYSTEMS LABORATORY
7. CONSIDERATIONS CONCERNING THE ROLE OF ACCOUNTING AS INFORMATIONAL SYSTEM AND ASSISTANCE OF DECISION
8. Do imputed education histories provide satisfactory results in fertility analysis in the Western German context?
9. Gender stereotyping and wage discrimination among Italian graduates
10. The name is absent