Testing the Information Matrix Equality with Robust Estimators



Clearly, σn 1, since Student’s t tends to N(0,1) as pn → ∞. Rewrite (16)
as

E Wʌ = bc,
ΓV √Γ+ε Л  c

where

ε = σn 1 + σnl, Л 2/Pn W + σn, R.

Expanding ρc ( Z/ √1 + ε) around ε = 0 gives

bc = E [ρc(Z)] 1E [(ZPc(Z)ε] + 1E [(Z2PC(Z) + 3C(Z))ε2]
2                 8

+o ( E ( ε2 )).

Since E [ρc(Z)] = bc, E(ε) = σ2n — 1 and E(ε2) = (σ2n — 1)2 + ‰σn + o(pn 1 ),
we obtain,

bc  =  bc - 2(σn - 1)e [Zρ'c(z)] + 4~~σne [z2ρ'c(z) + 3Zρc(z)]

2                      4pn

+o ( σn-1 ,pn1).

So

σn = 1 + 2⅛ + o ( P-1),                 (17)

2 pn

where

ς e [Z2ρc(Z) + 3Z^c(Z)]

1            E [Z(Z)]        .

Let ( m 1 ,m 2 ,m 3 ) ' = Wm ( Y ; θn ) with

/ u2 1 — d(u4 6u2 + 3) ʌ

W m ( Y ; θ ) = I          u3 3 u          I .

     u4 6 u2 + 3      /

By the symmetry of Student’s t distribution, EFn (ff 2) = 0. Furthermore,

EFn (Y2)


σn2


1


EFn( γ 2) σn + o ( P-1)


Pn

pn 2


2∑1 1 + o ( pn 1)
2
Pn

4 Σ1

2 pn


+ o ( P-1),


(18)


27




More intriguing information

1. Investment and Interest Rate Policy in the Open Economy
2. The name is absent
3. The open method of co-ordination: Some remarks regarding old-age security within an enlarged European Union
4. The English Examining Boards: Their route from independence to government outsourcing agencies
5. Les freins culturels à l'adoption des IFRS en Europe : une analyse du cas français
6. Commuting in multinodal urban systems: An empirical comparison of three alternative models
7. Skill and work experience in the European knowledge economy
8. CONSUMER ACCEPTANCE OF GENETICALLY MODIFIED FOODS
9. The name is absent
10. The name is absent