The name is absent



12


Stata Technical Bulletin


STB-4


. reg mhi3mo imale iagecont married inonwht
(obs=3265)

Source I

SS

df

MS

Number of obs =    3265

F( 4, 3260) = 116.13

_________-|-_

Model I

182843.927

4

46710.9817

Prob > F      = 0.0000

Residual ∣

i283iεε.i6

3260

393.605878

R-square      = 0.1247

Adj R-square = 0.1236

________ __|__

Total I

1468999.09

3264

449.141878

Root MSE      =   19.84

Variable ∣

Coefficient

Std. Error

t    Prob > It I         Mean

mhi3mo I

71.36854

---------+-

imale I

4.819749

.7416599

6.094     0.000      .3840735

iagecont I

.4287276

.0224545

19.093     0.000      53.66473

married I

2.806007

.7322122

3.832     0.000      .5911179

inonwht I

3.26364

.8643187

3.764     0.000      .2073507

_cons I
---------+-

44.29177

1.332665

33.235     0.000             1

We see that the effect of being married is still significant, but not as large as we saw in the raw data. There are also positive
effects for being male and nonwhite. Age is a strong positive predictor. The effect is about 17 points for 40 years of age, which
is about 1 standard deviation for the mental health index. Since age has such a dramatic effect, it is important to measure its
effect accurately and there is no reason to suspect that the effect is purely linear. One solution might be to include age squared,
but there is also no reason to suspect a quadratic effect and, with this amount of data, it would be best to let the data “select”
the functional form. One way is to decompose age into a set of splines:

. gen ages45 = max(0,iagecont-45)

. gen ages55 = max(0,iagecont-55)

. gen ages65 = max(0,iagecont-65)

These variables, along with iagecont, allow us to fit a connected set of line segments with hinges at 45, 55, and 65 years of
age. If we include these four variables in a linear regression, the “age effect” is modeled as

E = ∕3iagecont ⅛ ∕‰5ages45 + ∕⅜gages55 + ∕⅝sages65

For persons less than age 45, the effect is simply E = ∕3iagecont because the other three variables are defined as zero, and
the slope is
β.

At age 45, ages45 kicks in, taking on the value 0 (age 45), 1 (age 46), 2 (age 47), and so on. Thus, the age effect is
E = ∕3iagecont + ∕‰5ages45. The line joins with the iagecont < 45 line at age 45 because ages45 is zero there, but the
slope (the change in
E for a one-year change in age) is now β + ∕¾5.

At age 55, the process repeats as ages55 kicks in, taking on the value 0 (age 55), 1 (age 56), and so on. The age effect is
E = ∕3iagecont + ∕‰5ages45 + .⅛5ages55. Again the line joins at the age 55 hinge where ages55 is zero, but the slope is
now
β + β45 + /З55.

The process repeats once more at age 65. We now estimate our regression, obtaining estimates for β, ∕‰5, ∕⅜5, and β^:

. reg mhi3mo imale iagecont married inonwht ages*
(obs=3265)

Source I SS         df MS            Number of obs =    3265

---------+-

Model I
Residual I

186044.231

1279954.86

7

3267

26677.7473

392.986833

F( 7, 3267)

Prob > F
R-square

=   67.63

= 0.0000

= 0.1269

— A 1 OEtA

---------+-

Adj R-square

“ V∙IzOv

Total I

1465999.09

3264

449.141878

Root MSE

= 19.824

Variable I

Coefficient

Std. Error

t     Prob > It I

Mean

---- ------ ^^ ^^+”

mhi3mo ∣

71.36864

^^ ^^ ^^—^^ ^^—+-

imale I

4.555014

.7413871

6.144     0.000

.3840736

iagecont I

.3367814

.0832666

4.033     0.000

63.66473

married I

2.698273

.7639907

3.679     0.000

.6911179

inonwht I

3.342804

.8681187

3.861     0.000

.2073607

ages45 I

.1939794

.2070006

0.937     0.349

11.87662

ages55 I

.092176

.2676469

0.344     0.731

6.902229

ages65 I

-.4430367

.2194174

-2.019     0.044

1.962236

_cons I
---------+-

47.33282

3.030649

16.618     0.000

1



More intriguing information

1. The name is absent
2. Manufacturing Earnings and Cycles: New Evidence
3. The quick and the dead: when reaction beats intention
4. Staying on the Dole
5. References
6. The name is absent
7. Does Competition Increase Economic Efficiency in Swedish County Councils?
8. A NEW PERSPECTIVE ON UNDERINVESTMENT IN AGRICULTURAL R&D
9. The name is absent
10. Contribution of Economics to Design of Sustainable Cattle Breeding Programs in Eastern Africa: A Choice Experiment Approach
11. Change in firm population and spatial variations: The case of Turkey
12. The name is absent
13. The name is absent
14. Wirkung einer Feiertagsbereinigung des Länderfinanzausgleichs: eine empirische Analyse des deutschen Finanzausgleichs
15. Short report "About a rare cause of primary hyperparathyroidism"
16. Constrained School Choice
17. Secondary stress in Brazilian Portuguese: the interplay between production and perception studies
18. BUSINESS SUCCESS: WHAT FACTORS REALLY MATTER?
19. Improvement of Access to Data Sets from the Official Statistics
20. Deletion of a mycobacterial gene encoding a reductase leads to an altered cell wall containing β-oxo-mycolic acid analogues, and the accumulation of long-chain ketones related to mycolic acids