Poverty transition through targeted programme: the case of Bangladesh Poultry Model



Table 4. Multinomial logit model (Livelihood strategy #1 Agriculture includes livestock as comparison group.

#2 Livestock plus business/
skilled service___________________

#3 Livestock plus regular job

#4 Livestock plus wage labour

#5 Livestock plus other non-farm
(with international migration) jobs

Co-
efficient

Std.

Error

Sig.

Odds
ratio

Co-
efficient

Std.
Error

Sig.

Odds
ratio

Co-
efficient

Std.

Error

Sig.

Odds
ratio

Co-
efficient

Std.

Error

Sig.

Odds
ratio

Intercept

6.177

1.702

.00

2.207

2.882

.44

2.065

2.440

.40

5.418

1.749

.00

ed1

-.019

.106

.85

.98

.263

.147

.07

1.30

-.137

.166

.41

.87

.022

.103

.83

1.02

edu

.072

.101

.47

1.07

-.164

.146

.26

.85

.021

.163

.90

1.02

-.070

.101

.49

.93

deprat

-1.466

1.212

.23

.23

2.968

2.178

.17

19.45

-3.742

1.884

.05

.02

-2.110

1.277

.10

.12

adult

-.150

.659

.82

.86

1.689

1.008

.09

5.42

-1.990

1.072

.06

.14

-.052

.668

.94

.95

famS

.943

.523

.07

2.57

-1.222

.858

.15

.29

2.224

.833

.01

9.24

.894

.537

.10

2.44

Age

-.034

.022

.12

.97

-.017

.035

.62

.98

-.027

.036

.47

.97

-.027

.023

.24

.97

fhead

-1.097

1.403

.43

.33

-2.576

1.840

.16

.08

-2.210

1.793

.22

.11

-1.802

1.384

.19

.16

D11

-1.453

.767

.06

.23

-1.618

1.595

.31

.20

-1.481

1.223

.23

.23

-2.119

.906

.02

.12

Farm

-.404

.361

.26

.67

-.771

.560

.17

.46

-.771

.649

.23

.46

-.610

.343

.08

.54

lnyield

-.260

.051

.00

.77

-.020

.085

.82

.98

-.308

.099

.00

.73

-.137

.048

.00

.87

credit

.087

.518

.87

1.09

-.868

.940

.36

.42

1.757

.987

.08

5.79

.195

.534

.71

1.22

InBasset

-.059

.056

.30

.94

.005

.093

.95

1.01

-.013

.077

.86

.99

.069

.054

.20

1.07

lnlstk

-.730

.127

.00

.48

-.654

.173

.00

.52

-.466

.167

.01

.63

-.675

.131

.00

.51

distmkt

-.135

.309

.66

.87

-.736

.497

.14

.48

-.071

.396

.86

.93

.097

.313

.76

1.10

distroad

.135

.223

.55

1.14

-.451

.429

.29

.64

.374

.292

.20

1.45

-.036

.240

.88

.96

D1

1.582

1.356

.24

4.86

4.062

1.709

.02

58.07

2.883

1.534

.06

17.86

2.828

1.334

.03

16.91

tlength

.004

.036

.91

1.00

-.114

.064

.07

.89

-.002

.050

.97

1.00

-.062

.037

.10

.94

infoS

.254

.443

.57

1.29

-.618

.728

.40

.54

.320

.610

.60

1.38

.130

.456

.78

1.14

Model fit

Mean pred.

______prob.=0.313

% of correct
pred.=76.8

Mean pred.
prob.=0.154

% of correct

______pred.=88.7

Mean pred.
prob.=0.098

% of correct

______pred.=51.3

Mean pred.

________prob.=0.221

% of correct
pred.=35.2

Pseudo R square (Cox and Snell) = 0.748, Likelihood ratio Chi Square = 549.38 (sig = 0.00).

10



More intriguing information

1. Existentialism: a Philosophy of Hope or Despair?
2. Stakeholder Activism, Managerial Entrenchment, and the Congruence of Interests between Shareholders and Stakeholders
3. The name is absent
4. Magnetic Resonance Imaging in patients with ICDs and Pacemakers
5. The name is absent
6. Models of Cognition: Neurological possibility does not indicate neurological plausibility.
7. What should educational research do, and how should it do it? A response to “Will a clinical approach make educational research more relevant to practice” by Jacquelien Bulterman-Bos
8. FDI Implications of Recent European Court of Justice Decision on Corporation Tax Matters
9. Food Prices and Overweight Patterns in Italy
10. Non-causality in Bivariate Binary Panel Data