The name is absent



dHc  _

daj (t)

1
a
j(t)

+ λ(t) = 0, j = 1, . . . , n2

(7)

л - ρλ =

dH
dx

= 2n1c1x(t) + 2n2c2x(t) + λ(t)

b-

2x(t)
(x
2(t) + 1)2,

(8)

dHc _
(t)

a(t) -

x2(t)
bx(t) + (x2(t) + 1)2

(9)

From (6) and (7),

λ(t)


1
a
i(t)


1
aj(t)


i = 1,...,n1, j = 1,...,n2,


which implies


ai(t) = aj (t) i = 1, . . . , n1 , j = 1, . . . , n2


(10)

(11)


Moreover:

λ(t)


1
ai(t)


i = 1, . . . ,n1 implies n1ai(t) =


ni
λ(t)


and therefore

n1                                                  n2

= n1ai(t), and by similar argument     = n2aj (t),

i=1                                           j=1

which means that

n1           n2

a(t) =     ai(t) +     aj(t) i = 1,...,n1, j = 1,...,n2          (12)

i=1        j=2

and

a(t) = n1ai(t) + n2aj(t) i = 1, . . . , n1, j = 1, . . . , n2              (13)

Note that λ can be expressed as a function of a via the following reasoning:

λ(t)


1
ai(t)


i = 1, . . . ,n1 and λ(t)


1

aj(t)


j = 1, . . . ,n2


     ai(t)λ(t) = -1 i = 1, . . . , n1 and aj (t)λ(t) = -1 j = 1, . . . , n2

n1                                   n2

λ(t)    ai(t) = -n1 and λ(t)    aj (t) = -n2

i=1                              j=1

Adding the two together:

λ(t) ∑ ai(t) + λ(t) ∑ aj (t) = -(n + П2)
i=1              j=1



More intriguing information

1. Apprenticeships in the UK: from the industrial-relation via market-led and social inclusion models
2. Unilateral Actions the Case of International Environmental Problems
3. The name is absent
4. Towards a framework for critical citizenship education
5. Evaluating the Impact of Health Programmes
6. The name is absent
7. Visual Perception of Humanoid Movement
8. The Shepherd Sinfonia
9. The name is absent
10. Qualification-Mismatch and Long-Term Unemployment in a Growth-Matching Model