process ft (resp. Xt) around point a, over the period [0,1]. Thus,
_ L(n-1)rj
--X~ Σ (g ( fi∕n ) - g (Xi/n ))
n
г =1
diverges (to either -∞ or to ∞), at rate √m, provided that Lχ(r, a) — Lf (r, a) = 0 (almost
surely) for all a ∈ A, with A having non-zero Lebesgue measure, that is provided that ft and
Xt have different occupation densities over a non-negligible set.
Finally, Un,m,r can be written as
_ I (n-1)rj / 1 Vn-11 n (r(j+1)/n ( ( f ) — ∩( X ))d sʌ
1 nξn <xj=1 {∣Xj∕n-Xi∕n∣<ξn} ∖Jn∕n ∖g ∖Js) 9∖ s)) J
(28)
n “ I Lx (1 ,Xi/n) + oP(1)
Expanding the sums, (28) can be rewritten as
1 /n (ʃɪ/n( g( fs )- g( Xs ))d s)
nξn I Lχ (1 ,X 1 /n) + oP (1)
+1£IX/-X/|<jn}nj71/(g(fS)g(Xs))ds)
LX (1 ,X 2/n ) + oP (1)
1{|x/-X[(n-i)r/n]|<n}nj71/n(g(fs^g(Xs))ds)
LX (1, x(n-1)/n) + oP (1)
l 1 /1 {∣χj∕n-χι∕n∣<ξn}n (j∕χ+1 // (g (fs) g (Xs))ds)
nξn I LX(1 ,x 1 /n) + oP(1)
ι 1 {∣χj∕n-χ2∕n∣<ξn}n (ʃj/n+1)/n (g (fs) g (Xs))ds)
LX (1 ,X 2 /n ) + oP (1)
1r∣r x ∖f∖n (f(j+1) /n ( g ( fs ) —g ( Xs ))d s ^∖
∣ {∣χj∕n-χ[(n-1)r∕n] ∣<ξn} \/n/n si''1' sγ s
LX (1, x(n-1)/n) + oP (1)
+...
+ ɪ / ' χ χ . n '■ .g fS .g Xs ds
nξn I LX (1 ,X 1 /n)+ oP (1)
. X n ʃ ■ 's g - -
LX (1 ,x2/n ) + oP (1)
1 ^ʃ ' ■ ' ■' ∖
LX (1 ,x ( n-1) /n ) + oP (1)
26