Testing for One-Factor Models versus Stochastic Volatility Models



(i)c The statistic Zn,m,r can be rewritten as



√— L (n-1) rJ

  £  (S2n(Хг/п) - σ2(Хг/п))

i =1

s--------------------------------S/--------------------------------'

An,m,r



L ( m— 1) rJ

Σ

j=1


'm - Xj/m) - σ σ2(Xs)dS
JO

S/


Bm,r


√— l ( n-1)rJ                    r

+— ∑ σ2(Xi/n) - V— I σ2(Xs)ds.

n i=1                    0o

'-----------------------------------v-----------------------------------'


C n,m,r


(23)


Note that An,m,r = op(1) by Lemma 2.

We first need to show that Cn,m,r = oa.s.(1). Given Assumption 1(a), Lemma 1, and recalling
the modulus of continuity of a diffusion (see McKean, 1969, pp.95-96),


—— l ( n- i)rJ

— 52 σ2(Xi/n) -V—   σ2(Xs)ds

n TX                   -ʃo


ll ( n-1)rJ

Σ σ 2( Xi/n )
i=1


l ( n-1)rJ r( i+1) /n

       σ2 ( Xs )d s

i=1    i/n


2(Xi/n) - σ2(Xs)) ds


l ( n-1)rJ r( i+1) /n

i=1 i/n

L ( n-1)rJ r( i +1) /n

- σ2(Xs) ds


V sup   σ2(Xs) - σ2(Xτ) ≤ V sup Vσ2(Xτ)   sup  Xs - Xτ

|s—τ 1 /n                                        τ [0 ,r ]                 |s—τ 1 /n

s,r ]                                                                                   s,r ]


V—iC>(1.S( (nε/2)Oa.s. (n 1 /2 log n) = 0a.s. (1),


as n1 /2 ε/2n 1 /2 log n 0. Thus,


Zn,m,r


Bm,r + 0a.s.(1).


The statement then follows from the proof of Step 2 in part i(a).

(i)d The statement follows by the same argument as the one used in part (i)b and by the continuous
mapping theorem.

23



More intriguing information

1. Ultrametric Distance in Syntax
2. Are class size differences related to pupils’ educational progress and classroom processes? Findings from the Institute of Education Class Size Study of children aged 5-7 Years
3. The name is absent
4. The name is absent
5. The name is absent
6. Estimation of marginal abatement costs for undesirable outputs in India's power generation sector: An output distance function approach.
7. Disturbing the fiscal theory of the price level: Can it fit the eu-15?
8. The name is absent
9. The name is absent
10. Activation of s28-dependent transcription in Escherichia coli by the cyclic AMP receptor protein requires an unusual promoter organization