Testing for One-Factor Models versus Stochastic Volatility Models



(i)c The statistic Zn,m,r can be rewritten as



√— L (n-1) rJ

  £  (S2n(Хг/п) - σ2(Хг/п))

i =1

s--------------------------------S/--------------------------------'

An,m,r



L ( m— 1) rJ

Σ

j=1


'm - Xj/m) - σ σ2(Xs)dS
JO

S/


Bm,r


√— l ( n-1)rJ                    r

+— ∑ σ2(Xi/n) - V— I σ2(Xs)ds.

n i=1                    0o

'-----------------------------------v-----------------------------------'


C n,m,r


(23)


Note that An,m,r = op(1) by Lemma 2.

We first need to show that Cn,m,r = oa.s.(1). Given Assumption 1(a), Lemma 1, and recalling
the modulus of continuity of a diffusion (see McKean, 1969, pp.95-96),


—— l ( n- i)rJ

— 52 σ2(Xi/n) -V—   σ2(Xs)ds

n TX                   -ʃo


ll ( n-1)rJ

Σ σ 2( Xi/n )
i=1


l ( n-1)rJ r( i+1) /n

       σ2 ( Xs )d s

i=1    i/n


2(Xi/n) - σ2(Xs)) ds


l ( n-1)rJ r( i+1) /n

i=1 i/n

L ( n-1)rJ r( i +1) /n

- σ2(Xs) ds


V sup   σ2(Xs) - σ2(Xτ) ≤ V sup Vσ2(Xτ)   sup  Xs - Xτ

|s—τ 1 /n                                        τ [0 ,r ]                 |s—τ 1 /n

s,r ]                                                                                   s,r ]


V—iC>(1.S( (nε/2)Oa.s. (n 1 /2 log n) = 0a.s. (1),


as n1 /2 ε/2n 1 /2 log n 0. Thus,


Zn,m,r


Bm,r + 0a.s.(1).


The statement then follows from the proof of Step 2 in part i(a).

(i)d The statement follows by the same argument as the one used in part (i)b and by the continuous
mapping theorem.

23



More intriguing information

1. Evidence-Based Professional Development of Science Teachers in Two Countries
2. The name is absent
3. The name is absent
4. Outline of a new approach to the nature of mind
5. The name is absent
6. APPLICATIONS OF DUALITY THEORY TO AGRICULTURE
7. Fiscal Policy Rules in Practice
8. The name is absent
9. The Impact of Optimal Tariffs and Taxes on Agglomeration
10. Pupils’ attitudes towards art teaching in primary school: an evaluation tool