Testing for One-Factor Models versus Stochastic Volatility Models



= 2

1 {|M_a|<gn}CT4(u)Lχ(r, u)du
f∞∞ 1 {u-an}LX (1 ,u )d u


''


Lχ(r, a)da + θa.s.(1)


= 2

a.s. 2


1 {nn}σ4( a + n ) LX ( r, a + n )d z
f∞∞ 1 {nn}LX(1, a + n)dz


Lχ(r, a)da + oa,s. (1)


Proof of Step 4:


Z

-∞


Lχ(r, a)2
MM d a.


(20)


Cn,r


1 L (n_ 1) rJ

l σ 2( Xs )d s
0


√= £ σ2(Xi/n) --n
V n
i =1

1 l ( n_ 1)rJ                        l ( n_ 1)rJ ∕∙( i+1) /n

-= £ σ2(Xi/n) -√n £ I     σ2(Xs)ds

nn i =1                    i =1 7i/n

l ( n_ 1)rJ r( i+1) /n

n £

i=1    i/n


2( Xi/n )


- σ2(Xs)) ds


(21)


and, given the Lipschitz assumption on σ2(), the last line in (21) is oP(1) by the same
argument as the one used in Step 1.

Given Steps 1-4 above, it follows that the quadratic variation process of Zn,r is given by

2 [∞ σ4 (a) Lx(r, a)da + 2 [∞ σ4 (a) Lχ(^ a).2 da - 4 [∞ σ4 (a) Lχ(^ a).2 da

-∞                   -∞      LX (1, a)       -

∞       LX (1, a)

= 2 [∞ σ4 (a) Lχ(r, a)(LX(1,a) - Lχ(r, a)) da.                                  (22)

∞ -QQ                  LX (1 ,a)

The statement in the theorem then follows.

(i)b Without loss of generality, suppose that r < r'. By noting that

1 l ( n_ 1)rJ                        l ( n_ 1)rJ

-= £ sn (Xi/n ) -√n £ (Xi+1 /n - Xi/n )2

nn i=1                     i =1

1 [( n_ 1) r' ]                          [( n_ 1) r' ]

= — £ sn(Xi/n) -Vn £  (Xi+1 /n - Xi/n)2,

n i=1                      i=1

with Sn(Xi/n) = 0 and (Xi+1 /,n - Xi/n)2 = 0 for i > L(n - 1)rJ, the result then follows by
the continuous mapping theorem.

22



More intriguing information

1. DISCRIMINATORY APPROACH TO AUDITORY STIMULI IN GUINEA FOWL (NUMIDA MELEAGRIS) AFTER HYPERSTRIATAL∕HIPPOCAMP- AL BRAIN DAMAGE
2. Trade Liberalization, Firm Performance and Labour Market Outcomes in the Developing World: What Can We Learn from Micro-LevelData?
3. The Nobel Memorial Prize for Robert F. Engle
4. The name is absent
5. Spatial patterns in intermunicipal Danish commuting
6. The name is absent
7. Popular Conceptions of Nationhood in Old and New European
8. The name is absent
9. Intertemporal Risk Management Decisions of Farmers under Preference, Market, and Policy Dynamics
10. An Interview with Thomas J. Sargent