= 2

1 {|M_a|<gn}CT4(u)Lχ(r, u)du
f∞∞ 1 {∣u-a∣<ξn}LX (1 ,u )d u
''
Lχ(r, a)da + θa.s.(1)
= 2

a.s. 2
1 {∣zξn∣<ξn}σ4( a + zξn ) LX ( r, a + zξn )d z
f∞∞ 1 {∣zξn∣<ξn}LX(1, a + zξn)dz
Lχ(r, a)da + oa,s. (1)
Proof of Step 4:
Z∞
-∞
Lχ(r, a)2
MM d a.
(20)
Cn,r
1 L (n_ 1) rJ
l σ 2( Xs )d s
0
√= £ σ2(Xi/n) --n
V n
i =1
1 l ( n_ 1)rJ l ( n_ 1)rJ ∕∙( i+1) /n
-= £ σ2(Xi/n) -√n £ I σ2(Xs)ds
nn i =1 i =1 7i/n
l ( n_ 1)rJ r( i+1) /n
n £
i=1 i/n
(σ 2( Xi/n )
- σ2(Xs)) ds
(21)
and, given the Lipschitz assumption on σ2(∙), the last line in (21) is oP(1) by the same
argument as the one used in Step 1.
Given Steps 1-4 above, it follows that the quadratic variation process of Zn,r is given by
2 [∞ σ4 (a) Lx(r, a)da + 2 [∞ σ4 (a) Lχ(^ a).2 da - 4 [∞ σ4 (a) Lχ(^ a).2 da
-∞ -∞ LX (1, a) -
∞ LX (1, a)
= 2 [∞ σ4 (a) Lχ(r, a)(LX(1,a) - Lχ(r, a)) da. (22)
∞ -QQ LX (1 ,a)
The statement in the theorem then follows.
(i)b Without loss of generality, suppose that r < r'. By noting that
1 l ( n_ 1)rJ l ( n_ 1)rJ
-= £ sn (Xi/n ) -√n £ (Xi+1 /n - Xi/n )2
nn i=1 i =1
1 [( n_ 1) r' ] [( n_ 1) r' ]
= — £ sn(Xi/n) -Vn £ (Xi+1 /n - Xi/n)2,
n i=1 i=1
with Sn(Xi/n) = 0 and (Xi+1 /,n - Xi/n)2 = 0 for i > L(n - 1)rJ, the result then follows by
the continuous mapping theorem.
22
More intriguing information
1. Target Acquisition in Multiscale Electronic Worlds2. ‘Goodwill is not enough’
3. Philosophical Perspectives on Trustworthiness and Open-mindedness as Professional Virtues for the Practice of Nursing: Implications for he Moral Education of Nurses
4. An Efficient Secure Multimodal Biometric Fusion Using Palmprint and Face Image
5. Fortschritte bei der Exportorientierung von Dienstleistungsunternehmen
6. Short Term Memory May Be the Depletion of the Readily Releasable Pool of Presynaptic Neurotransmitter Vesicles
7. Anti Microbial Resistance Profile of E. coli isolates From Tropical Free Range Chickens
8. The Shepherd Sinfonia
9. LOCAL CONTROL AND IMPROVEMENT OF COMMUNITY SERVICE
10. The name is absent