A.3 Proof of Theorem 1
(i)a
1 L ( n-1) rj
Zn,r = —= ^ (sn(Xi/n) - σ2(Xi/n))
Vn ∙ 1
v i— I
4.
—n∏
^
” S/ ~
An,r
l( n-1)rj „
(X( (X(j+1)/n - Xj/n)2 - σ2(Xs)dS
j=1 j°
--------------------------------------------s/---------------------------
Bn,r
1 L ( n- 1) rj
+—n Σ σ2(Xi/n) - √n Jj σ2(Xs)dS.
×------—----------s/-------------------S
(18)
-/y~-
C n,r
The proof of the statement is based on the four steps below.
Step 1: An,r -→ mn (o, 2 ʃɪ σ4(a) LX^a)da) .
Step 2: Bn,r -→ MN (θ, 2 ʃɪ σ 4( a ) Lχ (1 ,a )d a ) .
Step 3: Let < An,Bn >r define the discretized quadratic covariation process.
plim n→∞
< An, Bn >r — 2 /∞ σ4(a) Lχ()2 da = 0.
∞ Lχ (1 ,a )
Step 4: Cn,r = oP(1).
Proof of Step 1: First note that using Ito’s formula
_ 1 v Vj =1 1 {∖χ3∕n-χi∕n∖<ξn}n (X(j + 1)/n Xj/n) 2(X ʌ
An,r = √n ----------Vn-1 1--σ (Xi/n)
n i=1 ∖ 2=3=1 1 {∖χj∙∕n-χi∕n∖<ξn}
l ( n-1)rj
= 4= ∑
√n ÷-'
i=1
^
∑n=111 {∖χj7n-χ^n∖<ξn}2nʃj/«+)/ (Xs Xj/n) σ(Xs)dw1 ,s
∑n-1 d
j =1 1 {∖χj∙∕n-χi∕n∖<ξn}
Gn,r
4.
l ( "y1)rj / V j=-; ɪ {∖χ,∕n-χ,∕n∖<tn}2 n Sil'N/n ( Xs - Xj/n ) μ ( Xs )d s
/ V I vn-11
i =1 ∖ 2=i=1 1 {∖χj∙∕n-χi∕n∖<ξn}
S/
H n,r
20