Testing for One-Factor Models versus Stochastic Volatility Models



A.3 Proof of Theorem 1
(i)a

1   L ( n-1) rj

Zn,r = —=  ^  (sn(Xi/n) - σ2(Xi/n))

Vn ∙ 1
v        i— I

4.


—n∏

^


”                          S/                         ~

An,r

l( n-1)rj                               „

(X(  (X(j+1)/n - Xj/n)2 -    σ2(Xs)dS

j=1                           j°


--------------------------------------------s/---------------------------
Bn,r

1    L ( n- 1) rj

+n  Σ σ2(Xi/n) - √n Jj σ2(Xs)dS.

×------—----------s/-------------------S


(18)


-/y~-
C
n,r


The proof of the statement is based on the four steps below.

Step 1: An,r -mn (o, 2 ʃɪ σ4(a) LX^a)da) .

Step 2: Bn,r -→ MN (θ, 2 ʃɪ σ 4( a ) Lχ (1 ,a )d a ) .

Step 3: Let < An,Bn >r define the discretized quadratic covariation process.


plim n→∞


< An, Bn >r 2 /σ4(a) Lχ()2 da = 0.

∞      Lχ (1 ,a )


Step 4: Cn,r = oP(1).


Proof of Step 1: First note that using Ito’s formula


_ 1 v     Vj =1 1 {χ3∕n-χi∕nn}n (X(j + 1)/n   Xj/n)      2(X ʌ

An,r = n         ----------Vn-1 1--σ (Xi/n)

n     i=1               2=3=1 1 {χj∕n-χi∕nn}


l ( n-1)rj

= 4=
√n ÷-'

i=1

^


n=111 {χj7n-χ^nn}2nʃj/«+)/ (Xs   Xj/n) σ(Xs)dw1 ,s

∑n-1 d

j =1 1 {χj∕n-χi∕nn}



Gn,r


4.


l ( "y1)rj / V j=-; ɪ {χ,∕n-χ,∕n<tn}2 n Sil'N/n ( Xs - Xj/n ) μ ( Xs )d s

/ V   I                   vn-11

i =1                      2=i=1 1 {χj∕n-χi∕nn}

S/

H n,r


20




More intriguing information

1. The name is absent
2. The name is absent
3. Applications of Evolutionary Economic Geography
4. Experimental Evidence of Risk Aversion in Consumer Markets: The Case of Beef Tenderness
5. Thresholds for Employment and Unemployment - a Spatial Analysis of German Regional Labour Markets 1992-2000
6. Importing Feminist Criticism
7. The name is absent
8. The name is absent
9. The name is absent
10. MULTIPLE COMPARISONS WITH THE BEST: BAYESIAN PRECISION MEASURES OF EFFICIENCY RANKINGS