Testing for One-Factor Models versus Stochastic Volatility Models



A.3 Proof of Theorem 1
(i)a

1   L ( n-1) rj

Zn,r = —=  ^  (sn(Xi/n) - σ2(Xi/n))

Vn ∙ 1
v        i— I

4.


—n∏

^


”                          S/                         ~

An,r

l( n-1)rj                               „

(X(  (X(j+1)/n - Xj/n)2 -    σ2(Xs)dS

j=1                           j°


--------------------------------------------s/---------------------------
Bn,r

1    L ( n- 1) rj

+n  Σ σ2(Xi/n) - √n Jj σ2(Xs)dS.

×------—----------s/-------------------S


(18)


-/y~-
C
n,r


The proof of the statement is based on the four steps below.

Step 1: An,r -mn (o, 2 ʃɪ σ4(a) LX^a)da) .

Step 2: Bn,r -→ MN (θ, 2 ʃɪ σ 4( a ) Lχ (1 ,a )d a ) .

Step 3: Let < An,Bn >r define the discretized quadratic covariation process.


plim n→∞


< An, Bn >r 2 /σ4(a) Lχ()2 da = 0.

∞      Lχ (1 ,a )


Step 4: Cn,r = oP(1).


Proof of Step 1: First note that using Ito’s formula


_ 1 v     Vj =1 1 {χ3∕n-χi∕nn}n (X(j + 1)/n   Xj/n)      2(X ʌ

An,r = n         ----------Vn-1 1--σ (Xi/n)

n     i=1               2=3=1 1 {χj∕n-χi∕nn}


l ( n-1)rj

= 4=
√n ÷-'

i=1

^


n=111 {χj7n-χ^nn}2nʃj/«+)/ (Xs   Xj/n) σ(Xs)dw1 ,s

∑n-1 d

j =1 1 {χj∕n-χi∕nn}



Gn,r


4.


l ( "y1)rj / V j=-; ɪ {χ,∕n-χ,∕n<tn}2 n Sil'N/n ( Xs - Xj/n ) μ ( Xs )d s

/ V   I                   vn-11

i =1                      2=i=1 1 {χj∕n-χi∕nn}

S/

H n,r


20




More intriguing information

1. THE CHANGING RELATIONSHIP BETWEEN FEDERAL, STATE AND LOCAL GOVERNMENTS
2. Proceedings of the Fourth International Workshop on Epigenetic Robotics
3. Mergers and the changing landscape of commercial banking (Part II)
4. The name is absent
5. Disturbing the fiscal theory of the price level: Can it fit the eu-15?
6. The name is absent
7. Publication of Foreign Exchange Statistics by the Central Bank of Chile
8. Telecommuting and environmental policy - lessons from the Ecommute program
9. Sector Switching: An Unexplored Dimension of Firm Dynamics in Developing Countries
10. L'organisation en réseau comme forme « indéterminée »