Nonparametric cointegration analysis



K

COS cos(xt + y) =

t= 1


cos(y + 0.5x)sin(Kx) - sin(y + 0.5x)(1 - cos(Kx))
4 sin(0.5
x)

(A.57)


Substituting K = [(n-τ)/s], x = 2kπs/n, y = 2kπ(τ-0.5)/n it follows that

K ~ n,                                                                  (A.58)

s

1 - cos(Kx) ~ 2k2π2τ2,                                                             (A.59)

n2

sin(Kx) ~ -2kπτ ,                                                             (A.60)

n

sin(0.5x) ~ kπ s , cos(0.5 x) ~ 1,                                                   (A.61)

n

sin(y + 0.5x) ~ 2kπ (τ + 0.5s___°J2, cos(y + 0.5x) ~ 1,                        (A.62)

n

hence

[( n-τ )/s ]

∑ cos(2kπ (js + τ - 0.5)/n)

j=1                                                                                             (A.63)

-2kπτ /n - (2kπ (τ +0.5s-0.5)/n2kk2π 2τ2/n2)    _ τ

4 k π s / n                        2 s

and consequently

lim       cos[2kπ (t - 0.5)/n] = -ɪ.                                            (A.64)

‘                                2 s

Next, observe that

49



More intriguing information

1. The name is absent
2. The name is absent
3. Testing Gribat´s Law Across Regions. Evidence from Spain.
4. Strategic Planning on the Local Level As a Factor of Rural Development in the Republic of Serbia
5. An Empirical Analysis of the Curvature Factor of the Term Structure of Interest Rates
6. The use of formal education in Denmark 1980-1992
7. Epistemology and conceptual resources for the development of learning technologies
8. Legal Minimum Wages and the Wages of Formal and Informal Sector Workers in Costa Rica
9. Analyzing the Agricultural Trade Impacts of the Canada-Chile Free Trade Agreement
10. The name is absent