Nonparametric cointegration analysis



K

COS cos(xt + y) =

t= 1


cos(y + 0.5x)sin(Kx) - sin(y + 0.5x)(1 - cos(Kx))
4 sin(0.5
x)

(A.57)


Substituting K = [(n-τ)/s], x = 2kπs/n, y = 2kπ(τ-0.5)/n it follows that

K ~ n,                                                                  (A.58)

s

1 - cos(Kx) ~ 2k2π2τ2,                                                             (A.59)

n2

sin(Kx) ~ -2kπτ ,                                                             (A.60)

n

sin(0.5x) ~ kπ s , cos(0.5 x) ~ 1,                                                   (A.61)

n

sin(y + 0.5x) ~ 2kπ (τ + 0.5s___°J2, cos(y + 0.5x) ~ 1,                        (A.62)

n

hence

[( n-τ )/s ]

∑ cos(2kπ (js + τ - 0.5)/n)

j=1                                                                                             (A.63)

-2kπτ /n - (2kπ (τ +0.5s-0.5)/n2kk2π 2τ2/n2)    _ τ

4 k π s / n                        2 s

and consequently

lim       cos[2kπ (t - 0.5)/n] = -ɪ.                                            (A.64)

‘                                2 s

Next, observe that

49



More intriguing information

1. The name is absent
2. Benefits of travel time savings for freight transportation : beyond the costs
3. A Study of Adult 'Non-Singers' In Newfoundland
4. Distortions in a multi-level co-financing system: the case of the agri-environmental programme of Saxony-Anhalt
5. Cultural Neuroeconomics of Intertemporal Choice
6. The Macroeconomic Determinants of Volatility in Precious Metals Markets
7. Une Gestion des ressources humaines à l'interface des organisations : vers une GRH territoriale ?
8. The name is absent
9. The name is absent
10. CURRENT CHALLENGES FOR AGRICULTURAL POLICY