Nonparametric cointegration analysis



K

COS cos(xt + y) =

t= 1


cos(y + 0.5x)sin(Kx) - sin(y + 0.5x)(1 - cos(Kx))
4 sin(0.5
x)

(A.57)


Substituting K = [(n-τ)/s], x = 2kπs/n, y = 2kπ(τ-0.5)/n it follows that

K ~ n,                                                                  (A.58)

s

1 - cos(Kx) ~ 2k2π2τ2,                                                             (A.59)

n2

sin(Kx) ~ -2kπτ ,                                                             (A.60)

n

sin(0.5x) ~ kπ s , cos(0.5 x) ~ 1,                                                   (A.61)

n

sin(y + 0.5x) ~ 2kπ (τ + 0.5s___°J2, cos(y + 0.5x) ~ 1,                        (A.62)

n

hence

[( n-τ )/s ]

∑ cos(2kπ (js + τ - 0.5)/n)

j=1                                                                                             (A.63)

-2kπτ /n - (2kπ (τ +0.5s-0.5)/n2kk2π 2τ2/n2)    _ τ

4 k π s / n                        2 s

and consequently

lim       cos[2kπ (t - 0.5)/n] = -ɪ.                                            (A.64)

‘                                2 s

Next, observe that

49



More intriguing information

1. Segmentación en la era de la globalización: ¿Cómo encontrar un segmento nuevo de mercado?
2. Urban Green Space Policies: Performance and Success Conditions in European Cities
3. Picture recognition in animals and humans
4. The name is absent
5. Nietzsche, immortality, singularity and eternal recurrence1
6. The name is absent
7. Investment in Next Generation Networks and the Role of Regulation: A Real Option Approach
8. Experimental Evidence of Risk Aversion in Consumer Markets: The Case of Beef Tenderness
9. The name is absent
10. Bidding for Envy-Freeness: A Procedural Approach to n-Player Fair Division Problems